
Inheritance: Designing
CPSC 219: Introduction to Computer Science for Multidisciplinary
Studies II
Fall 2023

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Thursday, 20 October 2023

Copyright © 2023

2

Outline
• Creating Subclasses

• Overriding Methods

• Class Hierarchies

• Designing for Inheritance

3

Inheritance Design Issues

• Every derivation should be an is-a relationship
• Think about the potential future of a class hierarchy, and design classes to be

reusable and flexible
• Find common characteristics of classes and push them as high in the class

hierarchy as appropriate
• Override methods as appropriate to tailor or change the functionality of a child
• Add new variables to children, but don't redefine (shadow) inherited variables

4

Inheritance Design Issues

• Allow each class to manage its own data; use the super reference to invoke the
parent's constructor to set up its data

• Even if there are no current uses for them, override general methods such as
toString and equals with appropriate definitions

• Use abstract classes to represent general concepts that lower classes have in
common

• Use visibility modifiers carefully to provide needed access without violating
encapsulation

5

Restricting Inheritance

• The final modifier can be used to curtail inheritance

• If the final modifier is applied to a method, then that method
cannot be overridden in any descendent classes

• If the final modifier is applied to an entire class, then that class
cannot be used to derive any children at all

• Thus, an abstract class cannot be declared as final

• These are key design decisions, establishing that a method or class
should be used as is

6

Deeper Hierarchies

7

Review of Inheritance

• Inheritance (so far) helps with:

1. Avoiding code duplication

2. Code reuse

3. Easier maintenance

4. Extendibility

8

Subtypes

We’ve seen that any object has a type (Date, Currency, String, ...)

Types of classes have subtypes (subclasses define subtypes)

eg. type Student is a subtype of type Person

You can think of an object of a derived class as having two types – that of the
superclass and the subclass.

1. So you can use it (e.g. in parameter list or assignment) where either type is legal

2. Objects of subclasses can be used where objects of supertypes are required.
(This is called substitution .)

9

Subtypes (An Example)

Vehicle v1 = new Vehicle();
Vehicle v2 = new Car();
Vehicle v3 = new Bicycle();

subclass objects
may be assigned to
superclass
variables

10

Polymorphism

We will learn about polymorphism

• defining polymorphism and its benefits

• Review of overriding methods in subclasses

• Run-time (late) binding of methods

11

Polymorphism

A subclass

• Inherits instance variables from its superclass
• Inherits methods from its superclass
• can redefine, or override superclass methods

 So can customize their behaviour

The method actually called depends on the type of the object

12

Example - Employees

• Hourly workers paid by the hour, 1½ for overtime
• Execs paid salary plus % profit

 Have objects named emp, exec, hourly
 What code is run if have:

 emp.pay(), exec.pay(), hourly.pay()

pay()

Employee

pay()

Executive

pay()

Hourly

13

Example - Employees

• Hourly workers paid by the hour, 1½ for overtime
• Execs paid salary plus % profit

 Have objects named emp, exec, hourly

 Have array of Employees with all employees in it
 What code is run if have employee.get(i).pay()?

how does this work? polymorphism

pay()

Employee

pay()

Executive

pay()

Hourly

14

15

Polymorphic Binding – How does it function?

• Consider obj.doIt();

• At some point, this invocation is bound to the definition of the
method that it invokes

• If this binding occurred at compile time, then that line of code would
call the same method every time

• Java defers method binding until run time

• so the type of the object determines the method called

• late binding or dynamic binding

16

Class->class Staff
Person->true
Staff->true
Student->false
Faculty->false

staff_name(100) Boss->null

Class->class Student
Person->true
Staff->false
Student->true
Faculty->false

student_name(200) Classes->[]

Class->class Faculty
Person->true
Staff->false
Student->false

Faculty->true
faculty_name(300) Sessions->[]

Onward to … Object Tools
and Interfaces

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Inheritance: Designing
	Outline
	Inheritance Design Issues
	Inheritance Design Issues
	Restricting Inheritance
	Deeper Hierarchies
	Review of Inheritance
	Subtypes
	Subtypes (An Example)
	Polymorphism
	Polymorphism
	Example - Employees
	Example - Employees
	Slide Number 14
	Polymorphic Binding – How does it function?
	Slide Number 16
	Onward to … Object Tools and Interfaces

