
Encapsulation
CPSC 219: Introduction to Computer Science for Multidisciplinary
Studies II
Fall 2023

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Thursday, 5 October 2023

Copyright © 2023

2

How do we use information hiding to
enforce encapsulation?

Slide material adapted partially from Dr. Wu lewu@ucalgary.ca

3

Encapsulation

The world sees The object sees

4

Encapsulation (Data Hiding)

4

• Object state:
• Value of instance variables
• Should always be valid

• Example:
• Fraction f = new Fraction(M, N); // M/N
• f.denominator = 0;

• Hide your data!
• Declare instance variables private.

• Always …. every single instance variable!

Data hiding is important because you
don’t want other programmers to
modify the data in your classes in
unexpected ways.

For example, fractions should never have
a denominator of 0. If somebody else is
allowed to change f.denominator, then it
is difficult to enforce this rule.

5

Access Modifiers

5

Specifies who can access what in a class.
• public – anyone can access variable/method
• private – only code inside the class can access variable/method.
• protected – code inside class and sub-classes (inheritance)
• default – code in same package (folder)

The default access modifier doesn’t use the word
“default” in code. These are the access rules we get
when we don’t use specific access modifiers such as
public/private/protected.

6

Constructors: Instantiating Objects

6

• Constructors help to enforce encapsulation by defining the allowable ways to
create an object.

• Example: Consider a class for Drivers
• What would be data you would allow to be passed in from “outside” to create an object to

store information about new drivers?

7

Constructors: Instantiating Objects

7

• Constructors help to enforce encapsulation by defining the allowable ways to
create an object.

• Example: Consider a class for Drivers
• What would be data you would allow to be passed in from “outside” to create an object to

store information about new drivers?
• What would you not allow? (Hint: each jurisdiction should have its own scheme for

assigning IDs for driver’s licenses. You shouldn’t be able to create a driver with an arbitrary
ID!)

8

Constructors: Instantiating Objects

8

• Constructors help to enforce encapsulation by defining the allowable ways to
create an object.

• Example: Consider a class for Drivers
• What would be data you would allow to be passed in from “outside” to create an object to

store information about new drivers?
• What would you not allow? (Hint: each jurisdiction should have its own scheme for

assigning IDs for driver’s licenses. You shouldn’t be able to create a driver with an arbitrary
ID!)

• You might have Driver(), Driver (String name), but not Driver(int preferredIDNum)
• What about Driver(String name, YearMonth dateOfBirth)?

9

Getting and setting values

Getter methods
• AKA “accessor” method
• Gives the caller access to an instance

variable
• Data hiding: only have getters for

instance variables others are
permitted to access

Setter methods
• AKA “mutator” method

• Allows the caller to set the value of an
instance variable

• Data hiding: only have setters for instance
variables others are permitted to change, and
enforce rules about what values are
permitted

public int getFoo()
{

return foo;
}

public void setFoo(int newFoo)
{

this.foo = newFoo;
}

10

Getting and setting values

• Outside of longer syntax the process of writing getter/setter is one of more
disliked properties of Java

• I have object with 10 fields of data
• Get all data…10 getters?
• Change all data…10 setters?

• Other languages now have added syntax that auto-generates these capabilities
(with ability to change this behaviour by adding your own code)

• Note sometimes you don’t want data to be accessible via get, sometimes your set is more
complicate than x = new value.

• Most IDE’s have ‘generate’ options that will let you pick fields and create set of
basic get/set commands as desired

• IntelliJ Code->Generate (Alt+Insert)
• You will need to have that object field selected at time of attempt

11

How does Java manage memory, and
how does this affect encapsulation?

12

Data hiding and objects

12

• Additional issues arise when your instance variables are objects and not
primitive types.

• What should happen when you want to copy an object containing another
object?

Point
x =3
Y = 5

line1

line1 = line2

line2

13

Data hiding and objects

13

• Additional issues arise when your instance variables are objects and not
primitive types.

• What should happen when you want to copy an object containing another
object?

Point
x =3
Y = 5

line1

line1 = line2.shallowcopy()

line2

14

Data hiding and objects

14

• Additional issues arise when your instance variables are objects and not
primitive types.

• What should happen when you want to copy an object containing another
object?

Point
x =3
Y = 5

line1

line1 = line2.deepcopy()

line2

Point
x =3
Y = 5

15

Basic Heap

16

An example

16

public class Book {
private String name;
public Book(String aName){…}
public String getName();

}

17

Stack, Heap and References

17

5 17 51 76

O
ne

29

Tw
o

11

• Book b1 = new Book(“One”);
Copy stack

data

Create a new
instance and
reference to it.

Heap

18

Stack, Heap and References

18

5 17 51 76

O
ne

29

Stack

Tw
o

11

b1 (reference) 29

• Book b1 = new Book(“One”);
Copy stack

Heap

19

Stack, Heap and References

19

• Book b2 = b1;

5 17 51 76

O
ne

29

Stack

Tw
o

11

b2 (reference) 29
b1 (reference) 29

• Book b1 = new Book(“One”);
Copy stack

data

Create a new
instance and
reference to it.

Heap

20

Stack, Heap and References

20

• Book b2 = b1;
• int x = 7;

5 17 51 76

O
ne

29

Stack

x (int)
Tw

o

11

7
b2 (reference) 29
b1 (reference) 29

• Book b1 = new Book(“One”);
Copy stack

data

Create a new
instance and
reference to it.

Heap

21

Stack, Heap and References

21

• Book b2 = b1;
• int x = 7;
• b1 = new Book(“Two”)

5 17 51 76

O
ne

29

Stack

x (int)
Tw

o

11

7
b2 (reference) 29
b1 (reference) 29 11

• Book b1 = new Book(“One”);
Copy stack

data

Create a new
instance and
reference to it.

Heap

22

Violation of Encapsulation

22

• Book b2 = b1;
• int x = 7;
• b1 = new Book(“Two”)
• b1.name = null; //if field name was public

5 17 51 76

O
ne

29

Stack

x (int)
nu

ll

11

7
b2 (reference) 29
b1 (reference) 29 11

• Book b1 = new Book(“One”);
Copy stack

data

Create a new
instance and
reference to it.

Heap

23

Data/Privacy Leak
(others can change my internal data out of my control)

24

Instance Variables as References

24

public class Book {
private String name;

public Book(String aName){…}

public String getName();

public void setName(String aName){…}

}

public class Series {

private ArrayList<Book> books = new ArrayList<Book>();

public void add(Book aBook){books.add(aBook);}
public void get(int number) { return books.get(number);}

public ArrayList<Book> getAll() {return books;}
}

25

Stack, Heap and References

25

• Series s = new Series();

5 17 51 76

O
ne

Stack

b2 (reference)
b1 (reference)

s (reference) 58
x (int) 7

29
11

Tw
o

11
Heap

5829 32

books
(ref) 32

26

Stack, Heap and References

26

• Series s = new Series();
• s.add(b1);

5 17 51 76

O
ne

Stack

b2 (reference)
b1 (reference)

s (reference) 58
x (int) 7

29
11

Tw
o

11
Heap

5829 32

books
(ref) 32[0] (ref) 11

27

Stack, Heap and References

27

• Series s = new Series();
• s.add(b1);
• s.add(b2);

5 17 51 76

O
ne

Stack

b2 (reference)
b1 (reference)

s (reference) 58
x (int) 7

29
11

Tw
o

11
Heap

5829 32

books
(ref) 32

[1] (ref) 29
[0] (ref) 11

28

Data Leak 1

28

• Series s = new Series();
• s.add(b1);
• s.add(b2);
• b1.setName(“Boogers”); //I still have access to b1

5 17 51 76

O
ne

Stack

b2 (reference)
b1 (reference)

al (reference) 32
s (reference) 58
x (int) 7

29
11

Tw
o

11
Heap

5829 32

books
(ref) 32

[1] (ref) 29
[0] (ref) 11

Data Leak!

29

Copy of Reference versus Copy of Object

2
9

• Reference is copied for
• Assignment
• Parameter passing
• Returns from methods

• If the someone else gives our method an object, they still have the reference to it
themselves and can modify it as they want, even as I try and use it for my own
purposes.

• Available Change -> make our method copy the object instead of using
reference.

30

Removing Privacy Leaks

3
0

public class Series {
private ArrayList<Book> books = new ArrayList<Book>();

public void add(Book aBook){
books.add(aBook);

}

public ArrayList<Book> getAll() {
return books;

}
}

Reference to a book – whoever calls
this method has a reference to the

same object.

31

Removing Privacy Leaks

3
1

public class Series {
private ArrayList<Book> books = new ArrayList<Book>();

public void add(Book aBook){
books.add(new Book(aBook));

}

public ArrayList<Book> getAll() {
return books;

}
}

Create a new book and don’t
share the reference

327

public class Series {
private ArrayList<Book> books = new ArrayList<Book>();
public void add(Book aBook){ books.add(new Book(aBook)); }
public void get(int number) {

return books.get(number);
}
public ArrayList<Book> getAll() {return books;}

}

 Series s = new Series();
 s.add(b1);

Stack

b2 (reference)
b1 (reference)

s (reference) 58
x (int) 7

29
11

O
ne

Tw
o

Heap

books
(ref) 32

aBook (reference) 11

5 11 17 29 32 51 58 76

338

public class Series {
private ArrayList<Book> books = new ArrayList<Book>();
public void add(Book aBook){ books.add(new Book(aBook)); }
public void get(int number) {

return books.get(number);
}
public ArrayList<Book> getAll() {return books;}

}

 Series s = new Series();
 s.add(b1);

Stack

s (reference) 58
x (int) 7
b2 (reference) 29
b1 (reference) 11

O
ne

Tw
o

Heap

books
(ref) 32[0] (ref) 82

aBook (reference) 11

5 11 17 29 32 8251 58 76

Tw
o

34

public class Series {
private ArrayList<Book> books = new ArrayList<Book>();
public void add(Book aBook){ books.add(new Book(aBook)); }
public void get(int number) {

return books.get(number);
}
public ArrayList<Book> getAll() {return books;}

}

 Series s = new Series();
 s.add(b1);
 ArrayList al = s.getAll(); // I could delete any book

Stack

al (reference) 32
s (reference) 58
x (int) 7
b2 (reference) 29
b1 (reference) 11

O
ne

Tw
o books

(ref) 32
[1] (ref) 57
[0] (ref) 85

Tw
o

O
ne

Heap9

5 11 17 29 32 57 8551 58 76

Onward to … Inheritance

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Encapsulation
	How do we use information hiding to enforce encapsulation?
	Encapsulation
	Encapsulation (Data Hiding)
	Access Modifiers
	Constructors: Instantiating Objects
	Constructors: Instantiating Objects
	Constructors: Instantiating Objects
	Getting and setting values
	Getting and setting values
	How does Java manage memory, and how does this affect encapsulation?
	Data hiding and objects
	Data hiding and objects
	Data hiding and objects
	Slide Number 15
	An example
	Stack, Heap and References
	Stack, Heap and References
	Stack, Heap and References
	Stack, Heap and References
	Stack, Heap and References
	Violation of Encapsulation
	Data/Privacy Leak
	Instance Variables as References
	Stack, Heap and References
	Stack, Heap and References
	Stack, Heap and References
	Data Leak 1
	Copy of Reference versus Copy of Object
	Removing Privacy Leaks
	Removing Privacy Leaks
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Onward to … Inheritance

