
Classes and Objects:
Intro
CPSC 219: Introduction to Computer Science for Multidisciplinary
Studies II
Fall 2023

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Thursday, 5 October 2023

Copyright © 2023

2

What is an object/class

2

• Object-oriented programming
• Objects describe what is important in your application.

• In Java, a programmer describes what a class is (a template).

• A class describes a set of objects with the same behavior.
• For example, the String class describes the behavior of all strings.
• We call each individual string as an instance of the class String

3

What is an object/class

3

• A class describes a set of objects with the same behavior.
• For example, the String class describes the behavior of all strings.
• We call each individual string as an instance of the class String

• Ex. Scanner scanner = new Scanner(System.in)

• Scanner is the class description (and the type)

• scanner is an instance of Scanner

4

Class and Objects

Class
• A template that describes:

• Fields (variables)
• Methods (functions) operating on the

data in the fields

Objects
• Instances of that class which take

on different forms

5

Basics

6

Constructing an Object from a Class

• Variables of a class store pointers to objects (instances) of that class
• The process of creating an instance of an object is called

instantiation/construction.
• Format:

• Example:

• The instantiation allocates memory space for the data fields and then
associates the address with the object name

<name of the class> <object name> = new <name of the class> ()

Student student1 = new Student()

7

Static?

7

• Each class has methods/fields we can access
• Methods are functions connected to a specific class

• Methods/variables without static are object methods/fields
• They are specific to internal data of each instance of the class

• static methods/variables are Class methods/ fields
• They are shared by all instances of that classes

8

Static?

8

• Each class has methods/fields we can access
• Methods are functions connected to a specific class

• Methods/variables without static are object methods/fields
• They are specific to internal data of each instance of the class
• THESE ARE NEW TO US

• static methods/variables are Class methods/fields
• They are shared by all instances of that classes
• WE’VE ONLY BEEN CREATING THESE PREVIOUSLY
• public static void main(String[] args) is an example of this

9

. (in context of)

9

• The dot tells Java we want to access a function/method of the particular
object/class

• Double.parseDouble(String s) is a class method of Double class (static!)
• Double.NaN is a class constant (static! and final!)

• scanner.nextLine() is a object method for a scanner instance
• array.length is an object constant (final!)

10

. (in context of)

10

• The dot tells Java we want to access a function/method of the particular
object/class

• Double.parseInteger(String s) is a class method of Double class (static!)
• Double.NaN is a class constant (static! and final!)

• scanner.nextLine() is a object method for a scanner instance
• array.length is an object constant (final!)

11

Decisions in Object Design

11

1. Encapsulation
• What is object representing? How is one object unique from another?

2. Data
• Looking at what the object encapsulates, how do we capture that information. (vars)

3. Methods
• How do we create a new object? (constructors)
• What information about the object do we share? (private/public access)
• How do we manipulate the information within the object? (accessors/mutators)

4. Identity
• How can we tell if two instances of the objects are equal? (equals/compareTo)

12

Naming/Purpose

13

Choosing Classes

13

• A class represents a single concept from the problem domain
• Name for a class should be a noun that describes concept
• Concepts from mathematics:

• Point
• Rectangle
• Ellipse

• Concepts from real life
• BankAccount
• CashRegister

14

Choosing Classes

14

• Actors (end in -er, -or)–objects do some kinds of work for you
• Scanner
• Random

• Utility classes–no objects, only static methods/constants (Helpers)
• Math

• Program starters: only have a main method
• Don't turn actions into classes:

• Paycheck is better name than ComputePaycheck

15

Create A Class

16

Let’s Create A Class

16

Tally counter –
What do we know about it?

17

Let’s Create A Class

17

Tally counter –
1. View count
2. Add 1 to count
3. Reset count to 0

I need to store some sort of integer data
for the tally. Any other data?

18

Let’s Create A Class

18

What if we were using a tally counter in Java?
Let us make a new one

Counter tally = new Counter();
Now how would we use it

System.out.println(tally.getCount())
tally.count()

System.out.println(tally.getCount())
tally.reset()
System.out.println(tally.getCount())

19

Let’s Create A Class

19

public class Counter{
//How do I create a counter?
//Special function called Constructor

}

20

Let’s Create A Class

20

public class Counter{
//How do I create a counter?
public Counter(){
}

}

21

Let’s Create A Class

21

How do we store data in classes?

public class Counter{
static int var1; //Class variable
int var2; // object/instance variable
static final int VAR1 = 1; //Class constant
final int VAR2 = 2; //instance constant

//(not overly useful versus class constant)
}

22

Let’s Create A Class

22

How do we store data in classes?

public class Counter{
static int var1; //shared for every Counter

int var2; // unique to each
// tally counter

}

23

Let’s Create A Class

23

public class Counter{
int count;
public Counter(){
}

}

Instance variables that aren’t initialized in the
constructor will default to Java’s default value
(like arrays did).
So int will be count = 0;

24

Let’s Create A Class

public class Counter{
int count = 0;
public Counter(){
}

}

public class Counter{
int count;
public Counter(){

count = 0;
}

}

public class Counter{
int count;
public Counter(){

this.count =0;
}

}
public class Counter{

int count; //default 0 will be assigned
public Counter(){
}

}

25

this.

Tells Java we mean instance variable

Technically unnecessary unless we have used the
same name for other function variables

Object Scope!

25

26

For these method calls tally is known as the implicit parameter
While any parameters passed inside the ellipses (…) are explicit parameters
Whatever object instance was tally. when the call was made becomes
referenced by this. Inside the class method definitions

Let’s Create A Class

26

27

Let’s Create A Class

27

public class Counter{
int count;
public Counter(){

this.count = 0;
}

//View count
//Add 1 to count
//Reset count to 0

}

28

Let’s Create A Class

29

For java methods/variables
public – any other code can access
private – only internal class access

count is an instance variable
one count var exists for each new Counter()

Instance variables should be private
Access/Modification via instance methods

Most instance methods are public (unless they
shouldn’t be used externally)

Let’s Create A Class

29

30

When private
Counter tally = new Counter();
tally.count();
tally.getCount(); //Gives us 1

If count was public?
Counter tally = new Counter();
tally.count = 500; //allowed now
tally.count();
tally.getCount(); //Gives us 501

Let’s Create A Class

30

31

Constructors

32

We can overload a constructor (same name, different parameters)
We now can make a new object through different means

Constructor Overloading

32

33

If you do not initialize an instance variable in a constructor
it is automatically set to a default value:

• Numbers are set to zero. (base types, not Objects)
• Boolean variables are initialized as false. (base types, not Objects)
• Object and array references are set to the special value null that

indicates that no object is associated with the variable.
• This is often not desirable

Constructors

33

34

Informative Printing

35

Every object shares as a base starting point
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
Which has a instance method public String toString()
Which has a default print for every object
getClass().getName() + '@' + Integer.toHexString(hashCode())
We can replace this with our own String (@Override is recommended)

Printing

35

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html

36

Public Interface

37

Public Interface

37

What developers can see about your class
often packaged up as API (Javadoc)

• Public variables/constants
• Public Constructors
• Public Accessors
• Public Mutators
Expose only what is necessary

38

Public Interface

38

java.lang includes System.java where System.out is a PrintStream

We can look at the public interface for PrintStream at
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/PrintStream.html
 The internal details may be unknown (private implementation)

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/PrintStream.html

Onward to … Design

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Classes and Objects: �Intro
	What is an object/class
	What is an object/class
	Class and Objects
	Basics
	Constructing an Object from a Class
	Static?
	Static?
	. (in context of)
	. (in context of)
	Decisions in Object Design
	Naming/Purpose
	Choosing Classes
	Choosing Classes
	Create A Class
	Let’s Create A Class
	Let’s Create A Class
	Let’s Create A Class
	Let’s Create A Class
	Let’s Create A Class
	Let’s Create A Class
	Let’s Create A Class
	Let’s Create A Class
	Let’s Create A Class
	Object Scope!
	Let’s Create A Class
	Let’s Create A Class
	Let’s Create A Class
	Let’s Create A Class
	Let’s Create A Class
	Constructors
	Constructor Overloading
	Constructors
	Informative Printing
	Printing
	Public Interface
	Public Interface
	Public Interface
	Onward to … Design

