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Revisiting Errors

• Previously, you learned about the three main types of errors:
1. Syntax Errors: refers to errors in the structure of a program and the rules about that 

structure. 
2. Runtime Errors: refers to errors that occur during program execution
3. Semantic/Logic Errors: refers to errors in the logic of a program

• Runtime Errors are also referred to as Exceptions
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Exceptions

• An exception is an event that occurs during the execution of a program, which 
disrupts its execution.

• Exceptions can rise due to many reasons, including improper use of functions 
or operators, user input, logic errors, hardware and OS limitations, etc. 

• Examples: 
• trying to access a list with an invalid index 
• trying to open a non-existent file 
• trying to parse a string using an invalid character 
• trying to converting a string to an integer 
• ... 



4

Exception Hierarchy

• All Exception are of Type 
Throwable

• Errors are for VM issues like 
OutOfMemory, NoSuchMethod

• https://www.tutorialspoint.com/ja
va/lang/java_lang_errors.htm

• Exceptions are from things that 
your code does while running

https://www.tutorialspoint.com/java/lang/java_lang_errors.htm
https://www.tutorialspoint.com/java/lang/java_lang_errors.htm
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Exception Hierarchy

• IOExceptions are encountered when dealing 
with files and other input/output libraries

• RuntimeExceptions are often from your 
internal methods

• Invalid indices, math errors, data structure 
access errors, null pointer errors
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Exceptions - Exception Handing

• Exceptions can be handled is several ways:
• Using conditionals: the code handles scenarios where errors may occur.
• Using try/except blocks: placing code that may fail within a try/except block.
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Try/Except
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Exceptions – Try/Except Block – (Python)

try:

<code segment that may cause error> 

except (<type>, <type>, ...) as <obj name>:    

<action to take when an exception occurs> 

else:

<action to take when no exception occurs> 

finally:

<action to take in any case>

optional: can target certain types of exceptions

optional: a named exception object 
for accessing info on exception

optional: executed only if no exceptions

optional: executed regardless of the code outcome
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try{
//<code segment causing error>

} catch(<type> <obj_name>){
//<action to take>

}

Exceptions – Try/Except Block – (Java) required: a named exception object 
for accessing info on exception

required: one 
or more types 
of exception to 
target



10

try{
//<code segment causing error>

} catch(<type> | <type> | ... <obj_name>){
//<action to take>

} catch(<type> | <type> | ... <obj_name>){
//<action to take>

}finally{
//<action to always take>

}

Exceptions – Try/Except Block – (Java)

optional: executed regardless of the code outcome

optional: 
exceptions to 
handle if 
earlier block 
doesn’t

required: one 
or more types 
of exception to 
target
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Exceptions – Try/Except Block – (Java)

try {
FileReader file_reader = new FileReader(file);
BufferedReader buffered_reader = new BufferedReader(file_reader);
String line = buffered_reader.readLine();
while (line != "") {

System.out.println(line);
line = buffered_reader.readLine();

}
} catch (FileNotFoundException e) {

System.err.println("Could not find file: " + file.getAbsolutePath());
System.exit(1);

} catch (IOException e) {
System.err.println("Error reading from file: " + file.getAbsolutePath());
System.exit(1);

}



12

Exceptions and Closing Files
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Closing File – With Finally

FileReader file_reader = null;
try {

file_reader = new FileReader(file);
/// ...

} catch (FileNotFoundException e) {
System.err.println("Could not find file: " + file.getAbsolutePath());
System.exit(1);

}  finally{
try{

file_reader.close();
} catch (IOException e) {
}

}
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Closing File Using “with resources” Style

String filename = args[0];
File file = new File(filename);
try (FileReader file_reader = new FileReader(file); ){

/// ...
} catch (FileNotFoundException e) {

System.err.println("Could not find file: " + file.getAbsolutePath());
System.exit(1);

} catch (IOException e) {
System.err.println("Could not close file: " + file.getAbsolutePath());
System.exit(1);

}

try ( //with resources) {}   - ensures that resource 
is closed at end of try
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Closing File Using “with resources” Style

String filename = args[0];
File file = new File(filename);
try (FileReader file_reader = new FileReader(file);

BufferedReader buffered_reader = new BufferedReader(file_reader);) {
/// ...

} catch (FileNotFoundException e) {
System.err.println("Could not find file: " + file.getAbsolutePath());
System.exit(1);

} catch (IOException e) {
System.err.println("Could not close file: " + file.getAbsolutePath());
System.exit(1);

}

try ( //with resources) {}   - ensures that resources 
are closed at end of try
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Debugging
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Produce the stack trace from program crashing

• If you want the stack trace you usually saw (for debugging purposes)
• Use e.printStackTrace() 

• e.getMessage() also useful for accessing previous exception message

String filename = args[0];
File file = new File(filename);
try (FileReader file_reader = new FileReader(file);

BufferedReader buffered_reader = new BufferedReader(file_reader);) {
/// ...

} catch (IOException e) {
e.printStackTrace();
System.err.println("Could not close file: " + file.getAbsolutePath());
System.exit(1);

}
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Throwing Exceptions
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Other Exception Handling

1. Functions Throwing Exceptions
• When you discover error, create an exception object and pass it to the 

system. Two steps:

1. header says it might throw an exception

public void amethod() throws IllegalArgumentException

2. if an error occurs, create the exception object and throw it

throw new IllegalArgumentException (“Invalid function parameter”);
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Example of throw processing

public static double div(double x, double y) throws IllegalArgumentException{
if (y == 0){

throw new IllegalArgumentException (“Can’t divide by 0”);
}
return x / y;

}
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Your Own Exceptions?
This will be clearer when we reach Classes and Objects
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//************************************************************
// OutOfRangeException.java Java Foundations
//
// Represents an exceptional condition in which a value is out of
// some particular range.
//************************************************************

public class OutOfRangeException extends Exception
{

// Sets up the exception object with a particular message. 
public OutOfRangeException (String message)
{

super (message);
}

}
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public static void main (String[] args) throws OutOfRangeException {
final int MIN = 25, MAX = 40;
Scanner scan = new Scanner (System.in);
OutOfRangeException problem = new OutOfRangeException ("Input value is out of range.");
System.out.print ("Enter an integer value between " + MIN + " and " + MAX + " : ");
int value = scan.nextInt();
// Determine if the exception should be thrown 
if (value < MIN || value > MAX)

throw problem;
System.out.println ("End of main method."); // may never reach

}
}



Onward to … Classes and 
Objects.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/
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