
Java System:
Exceptions
CPSC 219: Introduction to Computer Science for Multidisciplinary
Studies II
Fall 2023

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Wednesday, 22 September 2023

Copyright © 2023

2

Revisiting Errors

• Previously, you learned about the three main types of errors:
1. Syntax Errors: refers to errors in the structure of a program and the rules about that

structure.
2. Runtime Errors: refers to errors that occur during program execution
3. Semantic/Logic Errors: refers to errors in the logic of a program

• Runtime Errors are also referred to as Exceptions

3

Exceptions

• An exception is an event that occurs during the execution of a program, which
disrupts its execution.

• Exceptions can rise due to many reasons, including improper use of functions
or operators, user input, logic errors, hardware and OS limitations, etc.

• Examples:
• trying to access a list with an invalid index
• trying to open a non-existent file
• trying to parse a string using an invalid character
• trying to converting a string to an integer
• ...

4

Exception Hierarchy

• All Exception are of Type
Throwable

• Errors are for VM issues like
OutOfMemory, NoSuchMethod

• https://www.tutorialspoint.com/ja
va/lang/java_lang_errors.htm

• Exceptions are from things that
your code does while running

https://www.tutorialspoint.com/java/lang/java_lang_errors.htm
https://www.tutorialspoint.com/java/lang/java_lang_errors.htm

5

Exception Hierarchy

• IOExceptions are encountered when dealing
with files and other input/output libraries

• RuntimeExceptions are often from your
internal methods

• Invalid indices, math errors, data structure
access errors, null pointer errors

6

Exceptions - Exception Handing

• Exceptions can be handled is several ways:
• Using conditionals: the code handles scenarios where errors may occur.
• Using try/except blocks: placing code that may fail within a try/except block.

7

Try/Except

8

Exceptions – Try/Except Block – (Python)

try:

<code segment that may cause error>

except (<type>, <type>, ...) as <obj name>:

<action to take when an exception occurs>

else:

<action to take when no exception occurs>

finally:

<action to take in any case>

optional: can target certain types of exceptions

optional: a named exception object
for accessing info on exception

optional: executed only if no exceptions

optional: executed regardless of the code outcome

9

try{
//<code segment causing error>

} catch(<type> <obj_name>){
//<action to take>

}

Exceptions – Try/Except Block – (Java) required: a named exception object
for accessing info on exception

required: one
or more types
of exception to
target

10

try{
//<code segment causing error>

} catch(<type> | <type> | ... <obj_name>){
//<action to take>

} catch(<type> | <type> | ... <obj_name>){
//<action to take>

}finally{
//<action to always take>

}

Exceptions – Try/Except Block – (Java)

optional: executed regardless of the code outcome

optional:
exceptions to
handle if
earlier block
doesn’t

required: one
or more types
of exception to
target

11

Exceptions – Try/Except Block – (Java)

try {
FileReader file_reader = new FileReader(file);
BufferedReader buffered_reader = new BufferedReader(file_reader);
String line = buffered_reader.readLine();
while (line != "") {

System.out.println(line);
line = buffered_reader.readLine();

}
} catch (FileNotFoundException e) {

System.err.println("Could not find file: " + file.getAbsolutePath());
System.exit(1);

} catch (IOException e) {
System.err.println("Error reading from file: " + file.getAbsolutePath());
System.exit(1);

}

12

Exceptions and Closing Files

13

Closing File – With Finally

FileReader file_reader = null;
try {

file_reader = new FileReader(file);
/// ...

} catch (FileNotFoundException e) {
System.err.println("Could not find file: " + file.getAbsolutePath());
System.exit(1);

} finally{
try{

file_reader.close();
} catch (IOException e) {
}

}

14

Closing File Using “with resources” Style

String filename = args[0];
File file = new File(filename);
try (FileReader file_reader = new FileReader(file);){

/// ...
} catch (FileNotFoundException e) {

System.err.println("Could not find file: " + file.getAbsolutePath());
System.exit(1);

} catch (IOException e) {
System.err.println("Could not close file: " + file.getAbsolutePath());
System.exit(1);

}

try (//with resources) {} - ensures that resource
is closed at end of try

15

Closing File Using “with resources” Style

String filename = args[0];
File file = new File(filename);
try (FileReader file_reader = new FileReader(file);

BufferedReader buffered_reader = new BufferedReader(file_reader);) {
/// ...

} catch (FileNotFoundException e) {
System.err.println("Could not find file: " + file.getAbsolutePath());
System.exit(1);

} catch (IOException e) {
System.err.println("Could not close file: " + file.getAbsolutePath());
System.exit(1);

}

try (//with resources) {} - ensures that resources
are closed at end of try

16

Debugging

17

Produce the stack trace from program crashing

• If you want the stack trace you usually saw (for debugging purposes)
• Use e.printStackTrace()

• e.getMessage() also useful for accessing previous exception message

String filename = args[0];
File file = new File(filename);
try (FileReader file_reader = new FileReader(file);

BufferedReader buffered_reader = new BufferedReader(file_reader);) {
/// ...

} catch (IOException e) {
e.printStackTrace();
System.err.println("Could not close file: " + file.getAbsolutePath());
System.exit(1);

}

18

Throwing Exceptions

19

Other Exception Handling

1. Functions Throwing Exceptions
• When you discover error, create an exception object and pass it to the

system. Two steps:

1. header says it might throw an exception

public void amethod() throws IllegalArgumentException

2. if an error occurs, create the exception object and throw it

throw new IllegalArgumentException (“Invalid function parameter”);

20

Example of throw processing

public static double div(double x, double y) throws IllegalArgumentException{
if (y == 0){

throw new IllegalArgumentException (“Can’t divide by 0”);
}
return x / y;

}

21

Your Own Exceptions?
This will be clearer when we reach Classes and Objects

22

//**
// OutOfRangeException.java Java Foundations
//
// Represents an exceptional condition in which a value is out of
// some particular range.
//**

public class OutOfRangeException extends Exception
{

// Sets up the exception object with a particular message.
public OutOfRangeException (String message)
{

super (message);
}

}

23

public static void main (String[] args) throws OutOfRangeException {
final int MIN = 25, MAX = 40;
Scanner scan = new Scanner (System.in);
OutOfRangeException problem = new OutOfRangeException ("Input value is out of range.");
System.out.print ("Enter an integer value between " + MIN + " and " + MAX + " : ");
int value = scan.nextInt();
// Determine if the exception should be thrown
if (value < MIN || value > MAX)

throw problem;
System.out.println ("End of main method."); // may never reach

}
}

Onward to … Classes and
Objects.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Java System:�Exceptions
	Revisiting Errors
	Exceptions
	Exception Hierarchy
	Exception Hierarchy
	Exceptions - Exception Handing
	Try/Except
	Exceptions – Try/Except Block – (Python)
	Exceptions – Try/Except Block – (Java)
	Exceptions – Try/Except Block – (Java)
	Exceptions – Try/Except Block – (Java)
	Exceptions and Closing Files
	Closing File – With Finally
	Closing File Using “with resources” Style
	Closing File Using “with resources” Style
	Debugging
	Produce the stack trace from program crashing
	Throwing Exceptions
	Other Exception Handling
	Example of throw processing
	Your Own Exceptions?
	Slide Number 22
	Slide Number 23
	Onward to … Classes and Objects.

