
Software Development:
Testing
CPSC 219: Introduction to Computer Science for Multidisciplinary
Studies II
Fall 2023

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Wednesday, 22 September 2023

Copyright © 2023

2

Importance of Testing

2

• in large complex systems, 50% of the systems development budget
may be spent on testing

• this time should be reduced with modern design techniques on less
complex systems, but it is still very high.

• Studies have shown that virtually all non-trivial software ships with
errors!

• Thus, good testing is as important (more?) than programming

3

Psychological Problem of Acceptance of Testing

3

• we think if we're good, there will be no bugs. Therefore finding errors
shows incompetence - who wants that?

• BUT everyone writes code with bugs

• Good programs have approximately 1 bug per 100 lines. So take the
attitude that the more bugs you find, the BETTER tester you are.

4

When to Test

4

• Throughout the development lifecycle, not just at the end.

• earlier you find error the better, so test the design before coding --->
prevents errors

• Benefits:
• require less testing & debugging time
• cost less

5

Who should Test

5

• developers
• know code so can be more efficient (e.g. no 2 tests which test exactly same

stuff)
• but have blind spots (i.e. if didn’t realize system has to do X, will never test for

that)
• professional testers (Q/A department)

• include people from user department to test functionality

• Note - need both - they have different mind sets.
• Programmer - hopes not to find bugs
• Tester - aggressively looking for bugs (programmers will not like you)

6

How to Test

6

• Exhaustive testing (testing every possible input), would be ideal, but
clearly impossible

• Instead, a methodical approach to testing is used: try to develop test
cases to “cover all the bases”.

7

Black Box Testing

8

Black Box Testing

8

• assumes you know nothing of the internals of a program
• tests functionality

• i. e. checks that program satisfies requirement specifications

---> checks for "blind spots" on part of designer.
• consider all types of input
• for each, divide it into equivalence classes - all data in each class

is "equivalent" to each other
• Then choose test data such that at least one piece of data for each

equivalence class is included.

9

Black Box Testing (cont’d)

9

• you must look at the positive cases (you expect program will work), as well
as negative cases (you expect these to fail). Junior programmers often are
weak at testing all the negative cases

e.g. Size of array to store courses enrolled in - # courses
Valid
1 <= courses <= 5

Invalid
< 1
> 5

• Therefore need to include data from 3 test areas
• Note: 8 is equivalent to 12 - i.e. if one handled properly other will be

10

Black box Testing (cont’d)

10

• BUT boundaries more likely to
therefore:

have errors than inside

test e.g. 4, 5, 6.

(Note - strictly speaking, this goes beyond black box testing -you might
call it "grey box" testing - but because of the frequency of boundary
errors, these extra tests should be included).

11

Equivalence Classes

12

Equivalence classes of test data

12

Partition possible input (and states) into categories

These categories are also known as equivalence classes

• Test at least one data set from each class

13

Equivalence classes of test data

13

e.g.
If (n > 4 and n < 10) {

//Do something
} else{

//Do something else
{

14

Equivalence classes of test data

14

• in this case there are three equivalence classes:

We might choose 5 tests:
< 4 = 4 5 .. 9 = 10 > 10

<= 4 5 .. 9 >= 10

boundary boundary

15

White Box Testing

16

White Box Testing

16

• look inside at details of program to determine what to test, analyzing
the flow of control

• based on coverage testing. The various test cases must “cover” the
entire source code:

• ensure all statements are executed
• ensure all expressions are evaluated
• various paths through the code must be considered

17

White Box Testing

17

• look inside at details of program to determine what to test, analyzing
the flow of control

• based on coverage testing. The various test cases must “cover” the
entire source code:

• ensure all statements are executed (weak) Statement Testing
• ensure all choices/branches are evaluated (stronger) Conditional Testing
• various paths through the code must be considered (strongest) (Path Testing)

18

Testing and Debugging

19

Definition of Testing

19

testing = the process of detecting run-time errors (bugs) in code and
evaluating the functionality of the code (≈ logic errors)

• testing can tell you that you have bugs
• but it does not prove you don’t have bugs

20

Debugging

20

• Some techniques for locating bugs:

1. use “trace messages” – print statements saying where you are, and
values of some variables (most programmers start here)

2. use a debugger (built into IDEs, BREAKPOINTS!!!)
3. use “assertions” – statements that say what should be the case – if

it is not true, program automatically gives error. Tool used in
automatic testing (have to enable to have them run)

21

Debugging

21

• Testing helps discover bugs, i.e. you may know a bug exists, but not
much more.

• You must also:
• locate the error
• explain the error’s cause -> scientific hypothesis

-> scientific experiment
-> analysis of experiment

• correct the error
• re-test

22

Debugging

22

Note:
• The location of the error may not be the statement at which it

manifests itself (e.g. if you return the pointer to a class variable,
rather than a copy of that object, you won’t get incorrect values until
later in the program).

• A bug can be:
• a simple programmer error (more easily fixed)
• a design error (less easily fixed)

23

Debugging ≠ Testing

23

debugging = the process of correcting errors

• testing and debugging are cyclic

24

Modular Testing

25

Modular Testing

25

• if you write whole program and test it, and it doesn't work (e.g.
infinite loop) very hard to find error

• better to test each module separately ---> much smaller bit of code
to examine to find error.

• Most important concept: test each module individually as you
implement!

26

Modular Testing (cont’d)

26

• Test & debug method A.
• Test & debug method B.
• Test & debug method C.
• Finally, test method F.
• If it fails the testing then you can be (mostly) sure that the error is in F, and

not a sub-method.

method F

method A method B method C

27

Modular Testing (cont’d)

27

• Test & debug method A. (unit test)
• Test & debug method B. (unit test)
• Test & debug method C. (unit test)
• Finally, test method F. (integration test)
• If it fails the testing then you can be (mostly) sure that the error is in F, and

not a sub-method.

method F

method A method B method C

Onward to … JUnit

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Software Development: �Testing
	Importance of Testing
	Psychological Problem of Acceptance of Testing
	When to Test
	Who should Test
	How to Test
	Black Box Testing
	Black Box Testing
	Black Box Testing (cont’d)
	Black box Testing (cont’d)
	Equivalence Classes
	Equivalence classes of test data
	Equivalence classes of test data
	Equivalence classes of test data
	White Box Testing
	White Box Testing
	White Box Testing
	Testing and Debugging
	Definition of Testing
	Debugging
	Debugging
	Debugging
	Debugging Testing
	Modular Testing
	Modular Testing
	Modular Testing (cont’d)
	Modular Testing (cont’d)
	Onward to … JUnit

