
Software Development:
GIT Version Control
CPSC 219: Introduction to Computer Science for Multidisciplinary
Studies II
Fall 2023

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Wednesday, 22 September 2023

Copyright © 2023

2

Not an acronym

3

Not an acronym

• (from the source code read-me of GIT)
• "git" can mean anything, depending on your mood.

• random three-letter combination that is pronounceable, and not actually used by any
common UNIX command. The fact that it is a mispronunciation of "get" may or may not be
relevant.

• stupid. contemptible and despicable. simple. Take your pick from the dictionary of slang.
• "global information tracker": you're in a good mood, and it actually works for you. Angels

sing, and a light suddenly fills the room.
• "g*dd**n idiotic truckload of s**t": when it breaks

4

The Rise of Git

• Git is the most popular implementation of a distributed version control system.
• Development started in 2005 by Linus Torvalds.

• Linux kernel source host dispute with BitKeeper
• Same reason resulted in another Distribute Version Control Sys. -> Mercurial

• It is used by many popular open source projects as well as many commercial
organizations.

5

Why Git?

• Git’s the most popular version control system in the industry.
• Most popular VCS are similar to Git

Source: Stackoverflow 2018 survey

6

Why Git?

• Git is distributed
• i.e. there is generally are remote repo and a local repo on your own machine

• GIT lets each developer have their own version of repo
• Each developer can make changes and make commits to own repo and periodically

push/pull from remote to bring together development
• Frees programmer, code on a plane and still do multiple local commits

Source: Stackoverflow 2018 survey

7

Terminology

8

Version Control

• Version control:

1. Stores source code files for a project in a central place
• Allows multiple developers to work on the same code base in a controlled way

2. Keeps a record of changes made to source code files over time
• You can recall any version of a file based on a date or version number

3. Allows you to maintain multiple, concurrent releases of your software
• i.e. the mainline (or trunk) plus one or more branch releases

9

Version
Control:
Repository

• Repository: the place where source code files for
projects are stored

• Will contain all versions of the files
• Actually stored as differences

• much smaller than full copies
• but means you need to history to recreate a full file

• Can be local but often network accessible

10

Version
Control:
Repository

• Often stores non-code project artifacts such as:
• Ant/Maven files, Makefiles, etc.
• External documentation (analysis, design, etc.)

• Generally does not to store generated artifacts
• E.g. Object code, .class files, linking files, executables,

temp files, etc

11

Version Control: Basic Terms
Workspace: the place where you work
on a copy of a project’s files Files in the repository are not changed by you directly

Checking out: populates your workspace with up-to-date copies of files and
directories from the repository

Committing: saves your changes back
into the repository

Sometimes called checking in
The repository keeps track of changes using revision
numbers

Updating/pulling: repopulates your
workspace with the latest versions of files

Useful when other developers are also working
concurrently on the same project

12

Concepts

13

Version Control: Versioning

1.Retrieve a specific revision of a file or set of
files (i.e. a directory or a project)

2.List the differences between revisions
3.Retrieve all source code as it appeared at some

date in the past

Revisions

14

Version Control: Branching

• A branch is a separate, independent line of development
• Is like a separate repository for the same project
• Allows parallel development on the same code base
• Useful for creating a release branch

15

Basic Concepts: Merging

• Merging allows you to apply changes made in a release branch back into the
mainline

• E.g. Bug fixes, Refactorings!!!

16

Basic Concepts : Conflicts

• Two or more developers editing the same file can lead to conflicts
• Strict locking allows only one person at a time to have write access to the file (gen 1)

• GIT
• Will attempt to do merge itself, even within files
• Will have ‘conflict’ if file is gone, or same line is edited
• Will produce file with both lines and you’ll have to pick (or to make more changes)

17

Git

18

Git: *New* Version Control Terminology

SHA
• A SHA is basically an ID number for each commit.
• Ex. E2adf8ae3e2e4ed40add75cc44cf9d0a869afeb6
• Instead of version numbering

Staging Area
• You can think of the staging area as a prep table where Git will take the next

commit.
• Files on the Staging Index are ready to be added to the repository.

19

Git: Getting Started

• Three trees of Git
• The HEAD

• last committed snapshot
• Index (Staging Area)

• Proposed next commit snapshot
• Working directory

• Sandbox where you are making changes to code

20

Git: Basic Commands

• git init – Initialize a Git repository/working directory
• git init NAME

• git clone – Create an identical copy

21

Git: A Basic Workflow

• A basic workflow
• Init a repo (or clone an existing one)
• Edit files
• Stage the changes
• Review your changes
• Commit the changes

22

Git: A Basic Workflow

• A basic workflow
• Edit files
• Stage the changes
• Review your changes
• Commit the changes

23

Git: A Basic Workflow

• A basic workflow
• Edit files
• Stage the changes
• Review your changes
• Commit the changes

git add file.txt

24

Git: A Basic Workflow

• A basic workflow
• Edit files
• Stage the changes
• Review your changes
• Commit the changes

git status

25

Git: A Basic Workflow

• A basic workflow
• Edit files
• Stage the changes
• Review your changes
• Commit the changes

git commit

26

Git: Informational

• View changes
• git diff

• Show the difference between working directory and staged
• git diff --cached

• Show the difference between staged and the HEAD

• View history
• git log

27

Git: Revert

• Revert changes (Get back to a previous version)
• git checkout commit_hash

28

Git: Commit Tree

• Git sees commits this way…
• Branch annotate which commit we are working on
• (ref is the current head here)

29

Branching

30

Git: Branching

31

Git: Branching

32

Git: Branching

33

Merging

34

Git: Merging

• What do we do with this mess?
• Merge them

35

Git: Merging

• Steps to merge two branch
• Checkout the branch you want to merge onto
• Merge the branch you want to merge

36

Git: Merging

• We can continue working one whichever branch we want (the trunk default or
on experiment)

37

Git: Branching and Merging

• Why this is cool?
• Non-linear development

clone the code that is in production
create a branch for issue #53 (iss53)
work for 10 minutes
someone asks for a hotfix for issue #102
checkout ‘production’
create a branch (iss102)
fix the issue
checkout ‘production’, merge ‘iss102’
push ‘production’
checkout ‘iss53’ and keep working

38

Remote

39

GitHub, UofC GitLab

• It’s a hosting medium/website for your Git repositories

• Offers powerful collaborative abilities

• A good indicator of what you code/how much you code/quality of your code

• Access on https://github.com/ or https://csgit.ucalgary.ca

https://csgit.ucalgary.ca/

40

Git: Working with a remote repository

• Remote?
The common central repository
By default, remote name is origin and default branch is main (previously master).

41

Git: Remote Commands

git push
push your changes into the remote repository

git pull
pull your latest changes from the remote repository

42

Collaborate via Remote

43

Git: Collaborate

C1

C2

Main

Alice Bob

Remote Repo

44

Git: Collaborate

C1

C2

Main

Alice Bob

git clone git clone

C1

C2

Main

C1

C2

Main

Remote Repo

45

Git: Collaborate

C1

C2

Main

Alice Bob
C1

C2

Main

C1

C2

Main

CA git add
git commit

CB git add
git commit

Remote Repo

46

Git: Collaborate

C1

C2

Main

Alice Bob
C1

C2

Main

C1

C2

Main

CA CB

git push

CA

Remote Repo

47

Git: Collaborate

C1

C2

Main

Alice Bob
C1

C2

Main

C1

C2

Main

CA CB

git fetch

CA

CA

Remote Repo

48

Git: Collaborate

C1

C2

Main

Alice Bob
C1

C2

Main

C1

C2

Main

CA

CB

git merge

CA CA

Remote Repo

49

Git: Collaborate

C1

C2

Main

Alice Bob
C1

C2

Main

C1

C2

Main

CA

CB

git push

CA C3

CB

Remote Repo

50

Git: Collaborate

C1

C2

Main

Alice Bob
C1

C2

Main

C1

C2

Main

CA

CB

git pull

CA CA

CB

Remote Repo

CB

Onward to … Testing

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Software Development: �GIT Version Control
	Not an acronym
	Not an acronym
	The Rise of Git
	Why Git?
	Why Git?
	Terminology
	Version Control
	Version Control: Repository
	Version Control: Repository
	Version Control: Basic Terms
	Concepts
	Version Control: Versioning
	Version Control: Branching
	Basic Concepts: Merging
	Basic Concepts : Conflicts
	Git
	Git: *New* Version Control Terminology
	Git: Getting Started
	Git: Basic Commands
	Git: A Basic Workflow
	Git: A Basic Workflow
	Git: A Basic Workflow
	Git: A Basic Workflow
	Git: A Basic Workflow
	Git: Informational
	Git: Revert
	Git: Commit Tree
	Branching
	Git: Branching
	Git: Branching
	Git: Branching
	Merging
	Git: Merging
	Git: Merging
	Git: Merging
	Git: Branching and Merging
	Remote
	GitHub, UofC GitLab
	Git: Working with a remote repository
	Git: Remote Commands
	Collaborate via Remote
	Git: Collaborate
	Git: Collaborate
	Git: Collaborate
	Git: Collaborate
	Git: Collaborate
	Git: Collaborate
	Git: Collaborate
	Git: Collaborate
	Onward to … Testing

