
Java Basics:
Variables
CPSC 219: Introduction to Computer Science for Multidisciplinary
Studies II
Fall 2023

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Wednesday, 06 September 2023

Copyright © 2023

2

Java Variables (primitive/Object)

• Java has 2 types of simple variables
• Primitive

• int, byte, short, long
• float, double
• boolean
• char

• Object
• Integer, Byte, Short, Long, BigInteger
• Float, Double, BigDecimal
• Boolean
• Character
• String

3

Java Variables (Python mapping)

• Java has 2 types of simple variables
• Primitive

• int, byte, short, long
• float, double
• boolean
• char

• Object
• Integer, Byte, Short, Long, BigInteger (int -flexes in size as integer grows)
• Float(float -32 bit vm), Double (float -64 bit vm), BigDecimal
• Boolean (bool)
• Character
• String (str)

4

Java Variables (primitive/Object)

• Java has 2 types of simple variables
• Primitive – like c++ data types (just store data, primitives are mutable)

• int, byte, short, long
• float, double
• boolean
• char

• Object – are objects like Python (have methods and primitive wrapper objects are
immutable)

• Integer, Byte, Short, Long, BigInteger
• Float, Double, BigDecimal
• Boolean
• Character
• String

5

Typing

6

Variables (typing)

• Unlike python all variables are typed explicitly
• This means you have to tell Java what type of data the variable can store (and this is

permanent)
• If typing doesn’t match during compile time (or possibly while running) the program will

fail to compile (or crash if running)

• Usual simple mappings
Python
type

Java type

int x = 1 int int x = 1;

float x = 1.0 double double y = 1.0;

bool x = True y=False boolean boolean x = true; boolean y = false;

str x = “Hello” String String x = “Hello”;

str x = “H” char char x = ‘H’;

7

Variables (typing)

• More exact mappings (not as common but software engineering reasons to prefer)

• There are some performance consequences from using wrapper objects over
primitives, but in most cases not an issue

• Wrapper objects lead to clearer software engineering design

Python
type

Java type

int x = 1 BigInteger BigInteger x = 1;

float x = 1.0 Double Double y = 1.0;

bool x = True y=False Boolean Boolean x = true; Boolean y = false;

str x = “Hello” String String x = “Hello”; //Double quotes

str x = “H” Character Character x = ‘H’; //Single quotes

8

What do the most common names mean

• int/Integer – 4 byte integer (signed) -2^31 to 2^31-1
• double/Double – 8 byte fraction 64 bit (signed)
• boolean/Boolean – 1 bit
• String – array of char (2 byte per character/letter stored)

9

What do the other names mean

• byte/Byte – 1 byte integer (signed) -2^7 to 2^7-1
• short/Short – 2 byte integer (signed) -2^15 to 2^15-1
• long/Long – 8 byte integer (signed) -2^63 to 2^63-1
• float/Float – 4 byte fraction 32 bit (signed)
• char/Character – 2 bytes (single character/letter – example one ASCII)
• BigInteger -> scaling integer
• BigDecimal -> scaling fractional number

10

Creation/Assignment

11

Variables - Creation
• Variable creation (can be done without assignment):

• <type> <name>;

• Variable assignment
• <name> = <new data>;

• Variable initialization (both at once):
• <type> <name> = <data>;

• We must end with a semi-colon
• this means a line of Java code is done
• syntax errors if missing!!!

12

Variables – explicit typing
• In Java, the type is explicit

• When assigning new data if it doesn’t match and Java can tell
that on compile time it will crash (ex.)

int x = 1;
String y = “a”;
x = y;

incompatible types: java.lang.String cannot be converted to int

13

int x = 1;

Variable Memory - primitive

name
1

MEMORY

14

int x = 1;

x = 2;

• Changing a primitive changes memory.

Variable Memory - primitive

name
1

MEMORY

name
1 2

15

Variable Memory - Object

name
• “Jonathan”

name
• “Jonathan”

• “Dr. J”

String name = “Jonathan”;

name = “Dr. J”;

• Changing an Object variable doesn’t change memory. It actually just points the name
to a new memory spot with the new information. (Java eventually will get around to
throwing away “Jonathan” via something called garbage collection)

MEMORY

16

Naming

17

Variable Naming – Requirements

• Java naming convention:
• Names must start with a letter (e.g., a, ..., z, A, ..., Z) (can also start with _,$)
• A name may contain any letter, any number (0, ..., 9), and the special character “_”

(underscore).
• White spaces and signs with special meanings (e.g., “+”, “-”, “*”, “/”) are not allowed.

• Case sensitive “sum” is different than “Sum”
• Cannot use reserved keywords.
• Legal variable names: fooBar, X15Y, _variable, $var
• Illegal variable names: 42Bars, How Much, -Bar

18

Variable Naming – Constants

• ALL CAPITALS is used to indicate a constant where value won’t change
• (not enforced unless we use syntax-> final)

• Local constant (ex. in a function)
• final int LOCAL_CONSTANT = 1;
• int local_variable = 2;

• Global constant (ex. in a class)
• static final int GLOBAL_CONSTANT = 3;
• static int global_variable = 4;

19

Variable Naming - Style

• Style requirement:
• Use meaningful names for readability.
• Balance between brevity and descriptiveness

IndexToDatabseOfMyCourses (too long)
IndexToCourseDB (better)
INDEXTOCOURSEDB (hard to read -> CONSTANT)

• Avoid using variables that are only distinguishable by upper/lower case
• (e.g., donʼt use “Sum” and “sum” in the same program)

20

sumNetProfit sum_net_profit
- Popular in Java, used in Python - used more often in Python

Variable Naming - Case

21

Operators

22

Operators and Operands

• Operators are special tokens that represent computations like
addition, multiplication and division. The values the operator works on
are called operands.

• Operates:
• +, -, *, / ,% are clear
• Math.pow(num, exp) exponentiation
• // integer division (doesn’t exist)
• <,<=,>=,>,!=,== relation operators
• &&, ||, ! boolean operators (and, or, not)
• =, +=, -=, *=, /= assignment operators
• ++, -- increment by 1 (+= 1, -= 1)

23

Division (integer division is based on types used)

int x_int = 1;
int y_int = 2;
double x_dbl = 1.0;
double y_dbl = 2.0;

x_int / y_int = 0; -> integer
x_int / y_dbl = 0.5; -> double
x_dbl / y_int = 0.5; -> double
x_dbl / y_dbl = 0.5; -> double

24

Casting (changing types)

Widening Casting (automatically) - converting a smaller type to a larger type size
byte -> short -> char -> int -> long -> float -> double

int x = 9;
double y = x; //now has 0s after decimal point (y stores 9.0)

Narrowing Casting (manually) - converting a larger type to a smaller size type
double -> float -> long -> int -> char -> short -> byte

double x = 3.14;
int y = (int) x; //Loses data after decimal point [truncation] (y stores just 3)

25

Precedence

26

Precedence

The order of evaluation is determined by operator precedence (highest -> lowest)

Highest means the expression is collapse on execution of this operator first

Order Operations Precedence

1 () Highest

2 ++,-- Increment 1

3 -x, +x, !x Unary (not)

4 x * y, x / y, x % y Multiplicative

5 x + y, x – y Additive

6 <, <=, >=, > Relational

7 ==, != Equality

8 && and

9 || or

10 =, +=, -=, *=, /= Lowest

27

Strings

28

Strings

• https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/String
.html

• Let us store text (technical each text symbol is 2-bytes each)

• No indexing (use function charAt(index) instead, only positive indices, no [-1])
• No slicing via [], need to use substring() function
• String + String concatenation works and makes a new String
• String * int does not work
• String hello = “Hello, world!”; define
• hello.length(); character count, like python len(hello)

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/String.html

29

Comparing (Equality and Ordering)

• For Strings (and other object types)
• use .equals() instead of ==

• Use if (s1.equals(s2)) this tells you if contents to two string are the same
• instead of if (s1 == s2) this tells you if two strings are the same object

• Use .compareTo() instead of <, <=, > , >= (and possibly ==)
• s1.compareTo(s2) < 0 instead of s1 < s2
• s1.compareTo(s2) == 0 instead of s1 == s2
• s1.compareTo(s2) > 0 instead of s1 > s

Onward to … IO.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Java Basics:�Variables
	Java Variables (primitive/Object)
	Java Variables (Python mapping)
	Java Variables (primitive/Object)
	Typing
	Variables (typing)
	Variables (typing)
	What do the most common names mean
	What do the other names mean
	Creation/Assignment
	Variables - Creation
	Variables – explicit typing
	Variable Memory - primitive
	Variable Memory - primitive
	Variable Memory - Object
	Naming
	Variable Naming – Requirements
	Variable Naming – Constants
	Variable Naming - Style
	Variable Naming - Case
	Operators
	Operators and Operands
	Division (integer division is based on types used)
	Casting (changing types)
	Precedence
	Precedence
	Strings
	Strings
	Comparing (Equality and Ordering)
	Onward to … IO.

