
Optimization and Profiling
CPSC 219: Introduction to Computer Science for Multidisciplinary
Studies II
Fall 2023

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Friday, 10 November 2023

Copyright © 2023

2

Definition

3

Optimization

• Optimization is the process of modifying a program to
improve its efficiency

• Increase its speed
• Reduce its size (memory usage)

• Optimization can often be seen as de-factoring
• Program gets faster but…
• Harder to understand, upkeep, read

4

Efficiency

• Efficiency can be viewed in terms of:
1. Program requirements

• Does the program really need to run at a certain speed? Is it worth the
extra effort

2. Program design
• If performance is important, design a performance-oriented

architecture
• Set resource goals for individual subsystems and classes

3. Class and routine design
• Choose efficient algorithms and datatypes

• E.g. Quicksort vs. bubble sort
• E.g. Binary search vs. linear search

5

Efficiency (cont’d)

4. Operating system interactions
• Working with files, dynamic memory, or I/O devices means using system

calls
• May be slow or fast

5. Code compilation
• Good compilers produce optimized machine code

• May have options for different optimization levels

6

Efficiency (cont’d)

6. Hardware
• A hardware upgrade may be the cheapest way to improve a program’s

performance
• Not always possible

7. Code tuning
• Small-scale changes made to code to make it run more efficiently

• At the level of a single routine, or a few lines of code
• Tends to produce hard-to-understand code

• Obscures design

7

Guide to the galaxy of optimization

8

General Guidelines

• Don’t optimize as you go

• Focusing on optimization during initial development detracts from
achieving correctness, readability, and design quality

9

General Guidelines (cont’d)

• Jackson’s Rules of Optimization:

• Rule 1. Don’t do it.

• Rule 2 (for experts only). Don’t do it yet—that is, not until you have a
perfectly clear and unoptimized solution.

• Code tuning should be done only as a last step
• Knuth: Pre-mature optimization is the root of all evil

10

General Guidelines (cont’d)

• Optimize bottlenecks

• The 80/20 rule: 20% of program’s routines consume 80% of its execution
time

• Knuth found 4% of a FORTRAN program accounted for over 50% of its
run time

• Spend your time fixing these ‘bottlenecks’
• Don’t waste effort on the other parts

11

General Guidelines (cont’d)

• Measure performance when optimizing
• Use a profiler to find bottlenecks
• Use timers to measure CPU time

• Make sure a change actually improves speed
• May actually make things worse when using a different compiler, OS,

or processor

• Run regression tests after each optimization
• Make sure your program is still correct

12

Swipe right

13

Profiling

• Profiling

• Is used to find how much time is spent in each function of a program

• Helps find bottlenecks

• Helps you compare the performance of algorithms or programs

14

Profiling (cont’d)

• Works by sampling the program counter (PC register)
• Periodically queries the program, recording the function in which it is

running

• Is statistical in nature
• i.e. is somewhat inexact, and will vary from run to run

• Also the act of enabling profiling will generally slow down operation of
code, this slowdown can be different for varying classes

15

Java profiling

16

Profilers – Java

• Standard JVM Profilers
• VisualVM, JProfiler, YourKit and Java Mission Control
• method calls and memory usage
• Pros:

• Great for tracking down memory leaks, standard profilers detail out all
memory usage by the JVM and which classes/objects are responsible.

• Good for tracking CPU usage and zero in on hot spots.

17

Profilers – Java

• Standard JVM Profilers
• VisualVM, JProfiler, YourKit and Java Mission Control
• method calls and memory usage
• Cons:

• Requires a direct connection to the monitored JVM; this ends up
limiting usage to development environments in most cases.

• They slow down your application; a good deal of processing power is
required for the high level of detail provided.

18

Profilers – Java

• Lightweight Java Transaction Profilers
• XRebel and Stackify Prefix
• Aspect Profilers

• use aspect-oriented programming (AOP) to inject code into the start
and end of specified methods.

• Java Agent profilers (ex. Netbeans built-in)
• use the Java Instrumentation API to inject code into your application.

This method has greater access to your application since the code is
being rewritten at the bytecode level.

19

Profilers – Java

• Lightweight Java Transaction Profilers
• Aspect profilers are pretty easy to setup but are limited in what

they can monitor and are encumbered by detailing out
everything you want to be tracked.

• Java Agents have a big advantage in their tracking depth but are
much more complicated to write.

20

Profilers – Java

• Low Overhead, Java JVM Profiling in Production
(APM – APplication Monitoring)

• New Relic, AppDynamics, Stackify Retrace, Dynatrace
• how your system performs in production is critical
• Java APM tools typically use the Java Agent profiler method

• different instrumentation rules to allow them to run without affecting
performance in productions.

21

Memory

22

Code Tuning – Memory Leaks

• Java is stuck with garbage collection
• We can stop point at things but not delete them
• If your program naively leaves created objects connected to current code (heap

will continue to grow)
• You can generally see this via Profiling and heap dumps

23

Code Tuning – Heap Structure

• The young generation is
actually garbage collected
quicker than the older
generation

• Lots of new objects, or
aggressive GC in young
generation slows down
program

24

Code Tuning – Garbage Collectors

• Serial Collector
• Both Young and Old collections are done serially, using a single CPU and in a

stop-the-world fashion.
• Best client-side

25

Code Tuning – Garbage Collectors

• Serial Collector
• Both Young and Old collections are done

serially, using a single CPU and in a stop-the-
world fashion.

• Best client-side
• Parallel Collector(throughput collector)

• Designed to take advantage of available CPU
cores. Both Young and Old collections are
done using multiple Gcthreads.

26

Code Tuning – Garbage Collectors

• Mostly concurrent collectors (low-latency
collectors)

• Designed to minimize impact on
application response time associated with
Old generation stop-the-world
collections.

• Most of the collection of the old
generation using the CMS collector is
done concurrently with the execution of
the application.

27

Code Tuning – Garbage Collectors

• Choose wisely between 32-bit or 64-bit VMs

• going from a 32-bit to a 64-bit machine increases heap requirement for an
existing Java application by up to 1.5 times (bigger ordinary object pointers)

• -XX:+UseCompressedOops in Java version prior to 1.7 (which is now default)
• This tuning argument greatly alleviates the performance penalty associated

with a 64-bit JVM.

28

Code Tuning – Garbage Collectors

• Large heap not always better

• Profile your application for possible memory leaks using tools such as Java
VisualVM or Plumbr (Java memory leak detector).

• Focus your analysis on the biggest Java object accumulation points

• Reducing your application memory footprint will translate in improved
performance due to reduced GC activity.

29

Algorithm Based Optimization

30

Algorithm-Based Optimization

• Choosing a more efficient algorithm or data structure is often the best way to
improve program efficiency

• Look for algorithms that reduce the order of complexity

• E.g. Binary search 𝑂𝑂(log𝑛𝑛) vs. linear search 𝑂𝑂(𝑛𝑛)
• E.g. Merge sort 𝑂𝑂(𝑛𝑛𝑛𝑛𝑛 𝑛𝑛) vs. bubble sort 𝑂𝑂(𝑛𝑛2)

31

Algorithm-Based Optimization

• Do this first before attempting other optimizations
• Hand tuning an O(n2) algorithm won’t yield near the same gains as using an

O(n log n) algorithm

• Beware of worst-case performance
• Some algorithms may not achieve their average Big-O performance under

certain conditions
• E.g. The quicksort degenerates to O(n2) with nearly-sorted inputs

32

Algorithm-Based Optimization

• Sometimes an inefficient algorithm is fine for small inputs

• The overhead of a complicated algorithm may make it slower than a simple one
• And harder to debug and maintain!

• Measure performance to make sure you’ve made the right choice

33

Algorithm-Based Optimization

• Sometimes an inefficient algorithm is fine for small inputs

• Java’s own internal Quick Sort uses an Insertion Sort below a specific array size

34

Compiler Based Optimization

35

Compiler-Level Optimization

• Enabling compiler optimization can improve speed by as much as 2 times

• Most compilers turn off optimization by default
• Optimized code tends to confuse debuggers

• Works best with straightforward code
• Hand tuned code may actually be harder for the compiler to optimize

36

Java Specific Optimizations

37

Code Tuning – Java

• Java is an object oriented language
• That runs in a virtual machine
• There are more inefficiencies that can be improved than we’ve covered for a

language like c++

38

Strings

39

Code Tuning – Strings

• Not null terminated
• char[] and length are both stored

• Immutable
• Any change attempt (making new string)

• Also UTF-16 (uses two bytes for all)
• if you want UTF-32 there’s a lot of management steps

40

Code Tuning – Strings

• String pool
• Java has a special memory location (PermGen Space)

• Usually for things like class desc, and metadata (exist longterm)
• If a new String literal (“hello”) is made matching existing Java will attempt to

point at same data
• No NEW object

• new String(“hello”) by-passes this
• Also dynamic strings like one created at runtime from input won’t be

associated

41

Code Tuning – Strings

• String pool
• Java has a special memory location (PermGen Space)

• Usually for things like class desc, and metadata (exist longterm)

• 366712642
• 366712642
• 1829164700

42

Code Tuning – Strings

• 1442407170
• 1442407170
• 1028566121
• hello
• 1118140819

43

Code Tuning – Strings

• String pool

• Java has a special memory location (PermGen Space)
• Usually for things like class desc, and metadata (exist longterm)

• USE .equals()
• To get consistent String comparisons on .equals() compares contents, ==

will give you differing behaviour whether or not the String Pool has
been used

44

Code Tuning – Strings

• String pool

• USE .equals()
• To get consistent String comparisons on .equals() compares contents, ==

will give you differing behaviour whether or not the String Pool has
been used

• Example: Junit Testing
• Setup will contain string literals String pool which re-use memory, thus

== will work
• however during operation == may fail
• Strings during operation often collected via input steps

45

Code Tuning – Strings

• StringBuilder and StringBuffer
• StringBuilder not thread-safe

• Let you compile a list of Strings which you can convert to a final String once
• Much better than repetitive +, += operations

• Can even set expected capacity needed (like ArrayList) so that hidden array
doesn’t need to expand

46

Maps

47

• When you want to iterate through a Map, and you need both keys and values,
instead of the following:

• .. To this:

Code Tuning – Maps

48

Code Tuning – hashCode()/equals()

• Optimise your hashCode() and equals() methods

• A good hashCode() method is essential because it will prevent further calls to
the much more expensive equals()

• Can store a calculated hashCode once in object (only update on modified
object, when sets are called)

49

Primitives

50

Code Tuning – Primitives

• Reverse of refactoring

• Sometimes code tuning is called ‘defactoring’

• Use double instead of Double, int instead of Integer

• Java can store values on stack, instead of heap

• Try to avoid BigInteger and BigDecimal, similarly
• Only if you really need to exceed long, or need precision

51

Logging

52

Code Tuning – Logging

• Strings take a lot of time to create (program-wise)
• Check the current log level first before making log string

// don’t do this
log.debug(“User [” + userName + “] called method X with [” + i + “]”);

// or this
log.debug(String.format(“User [%s] called method X with [%d]”,
userName, i));

// do this
if (log.isDebugEnabled()) {
log.debug(“User [” + userName + “] called method X with [” + i + “]”);
}

53

Libraries

54

Code Tuning – Libraries

• Use Apache Commons StringUtils.replace instead of String.replace
• Java 9 improved String replace but if on Java 8

// replace this
test.replace(“test”, “simple test”);

// with this
StringUtils.replace(test, “test”, “simple test”);

55

Code Tuning – Libraries

• Avoid regular expressions and instead use Apache Commons Lang.

56

Simple Recursion

57

Code Tuning – Recursion

• Recursion is great for design of algorithms but not great for optimization

• Stay away from recursion.
• Recursion is very resource intensive!

• Very beneficial to code tune algorithms to be loops instead of recursive calls
• Replace program stack with self-managed stack structure for data that

would normally be passed in recursive call

58

Code Tuning – Recursion

59

Caching

60

Code Tuning – Hidden Caching

• A typical example is caching database connections in a pool.
• The creation of a new connection takes time, which you can avoid if you

reuse an existing connection.

• You can also find other examples in the Java language itself.
• The valueOf method of the Integer class, for example, caches the values

between -128 and 127.

61

Iterators

62

Code Tuning – Iterators

• Common now to use Java iterators
• Is a good refactoring, but depending…
• for (String value: strings) { // Do something useful here }

• a new iterator instance will be created
int size = strings.size();
for (int i = 0; i < size; i++) {

String value: strings.get(i);
// Do something useful here

}

Onward to … CPSC 331 Data
Structures.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Optimization and Profiling
	Definition
	Optimization
	Efficiency
	Efficiency (cont’d)
	Efficiency (cont’d)
	Guide to the galaxy of optimization
	General Guidelines
	General Guidelines (cont’d)
	General Guidelines (cont’d)
	General Guidelines (cont’d)
	Swipe right
	Profiling
	Profiling (cont’d)
	Java profiling
	Profilers – Java
	Profilers – Java
	Profilers – Java
	Profilers – Java
	Profilers – Java
	Memory
	Code Tuning – Memory Leaks
	Code Tuning – Heap Structure
	Code Tuning – Garbage Collectors
	Code Tuning – Garbage Collectors
	Code Tuning – Garbage Collectors
	Code Tuning – Garbage Collectors
	Code Tuning – Garbage Collectors
	Algorithm Based Optimization
	Algorithm-Based Optimization
	Algorithm-Based Optimization
	Algorithm-Based Optimization
	Algorithm-Based Optimization
	Compiler Based Optimization
	Compiler-Level Optimization
	Java Specific Optimizations
	Code Tuning – Java
	Strings
	Code Tuning – Strings
	Code Tuning – Strings
	Code Tuning – Strings
	Code Tuning – Strings
	Code Tuning – Strings
	Code Tuning – Strings
	Code Tuning – Strings
	Maps
	Code Tuning – Maps
	Code Tuning – hashCode()/equals()
	Primitives
	Code Tuning – Primitives
	Logging
	Code Tuning – Logging
	Libraries
	Code Tuning – Libraries
	Code Tuning – Libraries
	Simple Recursion
	Code Tuning – Recursion
	Code Tuning – Recursion
	Caching
	Code Tuning – Hidden Caching
	Iterators
	Code Tuning – Iterators
	Onward to … CPSC 331 Data Structures.

