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Definition



3

Optimization

• Optimization is the process of modifying a program to 
improve its efficiency 

• Increase its speed 
• Reduce its size (memory usage)

• Optimization can often be seen as de-factoring
• Program gets faster but…
• Harder to understand, upkeep, read
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Efficiency

• Efficiency can be viewed in terms of: 
1. Program requirements 

• Does the program really need to run at a certain speed?  Is it worth the 
extra effort

2. Program design 
• If performance is important, design a performance-oriented 

architecture 
• Set resource goals for individual subsystems and classes 

3. Class and routine design 
• Choose efficient algorithms and datatypes 

• E.g.  Quicksort vs. bubble sort 
• E.g.  Binary search vs. linear search
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Efficiency (cont’d)

4. Operating system interactions 
• Working with files, dynamic memory, or I/O devices means using system 

calls 
• May be slow or fast 

5. Code compilation 
• Good compilers produce optimized machine code 

• May have options for different optimization levels
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Efficiency (cont’d)

6. Hardware 
• A hardware upgrade may be the cheapest way to improve a program’s 

performance 
• Not always possible 

7. Code tuning 
• Small-scale changes made to code to make it run more efficiently 

• At the level of a single routine, or a few lines of code 
• Tends to produce hard-to-understand code 

• Obscures design
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Guide to the galaxy of optimization
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General Guidelines

• Don’t optimize as you go 

• Focusing on optimization during initial development detracts from 
achieving correctness, readability, and design quality
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General Guidelines (cont’d)

• Jackson’s Rules of Optimization: 

• Rule 1. Don’t do it. 

• Rule 2 (for experts only). Don’t do it yet—that is, not until you have a 
perfectly clear and unoptimized solution. 

• Code tuning should be done only as a last step
• Knuth:  Pre-mature optimization is the root of all evil 



10

General Guidelines (cont’d)

• Optimize bottlenecks 

• The 80/20 rule: 20% of program’s routines consume 80% of its execution 
time 

• Knuth found 4% of a FORTRAN program accounted for over 50% of its 
run time 

• Spend your time fixing these ‘bottlenecks’
• Don’t waste effort on the other parts
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General Guidelines (cont’d)

• Measure performance when optimizing 
• Use a profiler to find bottlenecks 
• Use timers to measure CPU time 

• Make sure a change actually improves speed 
• May actually make things worse when using a different compiler, OS, 

or processor 

• Run regression tests after each optimization 
• Make sure your program is still correct
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Swipe right
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Profiling

• Profiling 

• Is used to find how much time is spent in each function of a program 

• Helps find bottlenecks 

• Helps you compare the performance of algorithms or programs
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Profiling (cont’d)

• Works by sampling the program counter (PC register) 
• Periodically queries the program, recording the function in which it is 

running 

• Is statistical in nature 
• i.e.  is somewhat inexact, and will vary from run to run

• Also the act of enabling profiling will generally slow down operation of 
code, this slowdown can be different for varying classes
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Java profiling
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Profilers – Java

• Standard JVM Profilers
• VisualVM, JProfiler, YourKit and Java Mission Control
• method calls and memory usage
• Pros:

• Great for tracking down memory leaks, standard profilers detail out all 
memory usage by the JVM and which classes/objects are responsible. 

• Good for tracking CPU usage and zero in on hot spots.
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Profilers – Java

• Standard JVM Profilers
• VisualVM, JProfiler, YourKit and Java Mission Control
• method calls and memory usage
• Cons:

• Requires a direct connection to the monitored JVM; this ends up 
limiting usage to development environments in most cases. 

• They slow down your application; a good deal of processing power is 
required for the high level of detail provided.
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Profilers – Java

• Lightweight Java Transaction Profilers
•  XRebel and Stackify Prefix
• Aspect Profilers 

• use aspect-oriented programming (AOP) to inject code into the start 
and end of specified methods.

• Java Agent profilers (ex. Netbeans built-in)
• use the Java Instrumentation API to inject code into your application. 

This method has greater access to your application since the code is 
being rewritten at the bytecode level. 
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Profilers – Java

• Lightweight Java Transaction Profilers
• Aspect profilers are pretty easy to setup but are limited in what 

they can monitor and are encumbered by detailing out 
everything you want to be tracked. 

• Java Agents have a big advantage in their tracking depth but are 
much more complicated to write.
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Profilers – Java

• Low Overhead, Java JVM Profiling in Production 
(APM – APplication Monitoring)

• New Relic, AppDynamics, Stackify Retrace, Dynatrace
• how your system performs in production is critical
• Java APM tools typically use the Java Agent profiler method 

• different instrumentation rules to allow them to run without affecting 
performance in productions.
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Memory
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Code Tuning – Memory Leaks

• Java is stuck with garbage collection
• We can stop point at things but not delete them
• If your program naively leaves created objects connected to current code (heap 

will continue to grow)
• You can generally see this via Profiling and heap dumps
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Code Tuning – Heap Structure

• The young generation is 
actually garbage collected 
quicker than the older 
generation

• Lots of new objects, or 
aggressive GC in young 
generation slows down 
program
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Code Tuning – Garbage Collectors

• Serial Collector
• Both Young and Old collections are done serially, using a single CPU and in a 

stop-the-world fashion.
• Best client-side
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Code Tuning – Garbage Collectors

• Serial Collector
• Both Young and Old collections are done 

serially, using a single CPU and in a stop-the-
world fashion.

• Best client-side
• Parallel Collector(throughput collector)

• Designed to take advantage of available CPU 
cores. Both Young and Old collections are 
done using multiple Gcthreads.
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Code Tuning – Garbage Collectors

• Mostly concurrent collectors (low-latency 
collectors)

• Designed to minimize impact on 
application response time associated with 
Old generation stop-the-world 
collections.

• Most of the collection of the old 
generation using the CMS collector is 
done concurrently with the execution of 
the application.
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Code Tuning – Garbage Collectors

• Choose wisely between 32-bit or 64-bit VMs

• going from a 32-bit to a 64-bit machine increases heap requirement for an 
existing Java application by up to 1.5 times (bigger ordinary object pointers)

•  -XX:+UseCompressedOops in Java version prior to 1.7 (which is now default)
• This tuning argument greatly alleviates the performance penalty associated 

with a 64-bit JVM.
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Code Tuning – Garbage Collectors

• Large heap not always better

• Profile your application for possible memory leaks using tools such as Java 
VisualVM or Plumbr (Java memory leak detector).

• Focus your analysis on the biggest Java object accumulation points

• Reducing your application memory footprint will translate in improved 
performance due to reduced GC activity.
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Algorithm Based Optimization
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Algorithm-Based Optimization 

•  Choosing a more efficient algorithm or data structure is often the best way to 
improve program efficiency 

• Look for algorithms that reduce the order of complexity 

• E.g.  Binary search 𝑂𝑂(log𝑛𝑛) vs. linear search 𝑂𝑂(𝑛𝑛) 
• E.g.  Merge sort 𝑂𝑂(𝑛𝑛𝑛𝑛𝑛 𝑛𝑛) vs. bubble sort 𝑂𝑂(𝑛𝑛2)
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Algorithm-Based Optimization 

• Do this first before attempting other optimizations 
• Hand tuning an O(n2) algorithm won’t yield near the same gains as using an 

O(n log n) algorithm 

• Beware of worst-case performance 
• Some algorithms may not achieve their average  Big-O performance under 

certain conditions 
• E.g.  The quicksort degenerates to O(n2) with nearly-sorted inputs
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Algorithm-Based Optimization 

• Sometimes an inefficient algorithm is fine for small inputs 

• The overhead of a complicated algorithm may make it slower than a simple one
• And harder to debug and maintain! 

• Measure performance to make sure you’ve made the right choice
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Algorithm-Based Optimization 

• Sometimes an inefficient algorithm is fine for small inputs 

• Java’s own internal Quick Sort uses an Insertion Sort below a specific array size



34

Compiler Based Optimization
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Compiler-Level Optimization

• Enabling compiler optimization can improve speed by as much as 2 times 

• Most compilers turn off optimization by default
• Optimized code tends to confuse debuggers 

• Works best with straightforward code 
• Hand tuned code may actually be harder for the compiler to optimize
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Java Specific Optimizations
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Code Tuning – Java

• Java is an object oriented language
• That runs in a virtual machine
• There are more inefficiencies that can be improved than we’ve covered for a 

language like c++
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Strings
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Code Tuning – Strings

• Not null terminated
• char[] and length are both stored

• Immutable
• Any change attempt (making new string)

• Also UTF-16 (uses two bytes for all) 
• if you want UTF-32 there’s a lot of management steps
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Code Tuning – Strings

• String pool
• Java has a special memory location (PermGen Space)

• Usually for things like class desc, and metadata (exist longterm)
• If a new String literal (“hello”) is made matching existing Java will attempt to 

point at same data
• No NEW object

• new String(“hello”) by-passes this
• Also dynamic strings like one created at runtime from input won’t be 

associated
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Code Tuning – Strings

• String pool
• Java has a special memory location (PermGen Space)

• Usually for things like class desc, and metadata (exist longterm)

• 366712642
• 366712642
• 1829164700
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Code Tuning – Strings

• 1442407170
• 1442407170
• 1028566121
• hello
• 1118140819
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Code Tuning – Strings

• String pool

• Java has a special memory location (PermGen Space)
• Usually for things like class desc, and metadata (exist longterm)

• USE .equals()
• To get consistent String comparisons on .equals() compares contents, == 

will give you differing behaviour whether or not the String Pool has 
been used
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Code Tuning – Strings

• String pool

• USE .equals()
• To get consistent String comparisons on .equals() compares contents, == 

will give you differing behaviour whether or not the String Pool has 
been used

• Example: Junit Testing
• Setup will contain string literals String pool which re-use memory, thus 

== will work 
• however during operation == may fail
• Strings during operation often collected via input steps
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Code Tuning – Strings

• StringBuilder and StringBuffer
• StringBuilder not thread-safe

• Let you compile a list of Strings which you can convert to a final String once
• Much better than repetitive +, += operations

• Can even set expected capacity needed (like ArrayList) so that hidden array 
doesn’t need to expand



46

Maps
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• When you want to iterate through a Map, and you need both keys and values, 
instead of the following:

• .. To this:

Code Tuning – Maps
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Code Tuning – hashCode()/equals()

• Optimise your hashCode() and equals() methods

• A good hashCode() method is essential because it will prevent further calls to 
the much more expensive equals()

• Can store a calculated hashCode once in object (only update on modified 
object, when sets are called)
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Primitives
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Code Tuning – Primitives

• Reverse of refactoring 

• Sometimes code tuning is called ‘defactoring’

• Use double instead of Double, int instead of Integer

• Java can store values on stack, instead of heap

• Try to avoid BigInteger and BigDecimal, similarly
• Only if you really need to exceed long, or need precision
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Logging



52

Code Tuning – Logging

• Strings take a lot of time to create (program-wise)
• Check the current log level first before making log string

// don’t do this
log.debug(“User [” + userName + “] called method X with [” + i + “]”);

// or this
log.debug(String.format(“User [%s] called method X with [%d]”, 
userName, i));

// do this
if (log.isDebugEnabled()) {
log.debug(“User [” + userName + “] called method X with [” + i + “]”);
}
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Libraries
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Code Tuning – Libraries

• Use Apache Commons StringUtils.replace instead of String.replace
• Java 9 improved String replace but if on Java 8

// replace this
test.replace(“test”, “simple test”);

// with this
StringUtils.replace(test, “test”, “simple test”);
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Code Tuning – Libraries

• Avoid regular expressions and instead use Apache Commons Lang.
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Simple Recursion
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Code Tuning – Recursion

• Recursion is great for design of algorithms but not great for optimization

• Stay away from recursion. 
• Recursion is very resource intensive!

• Very beneficial to code tune algorithms to be loops instead of recursive calls
• Replace program stack with self-managed stack structure for data that 

would normally be passed in recursive call
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Code Tuning – Recursion
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Caching
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Code Tuning – Hidden Caching

• A typical example is caching database connections in a pool. 
• The creation of a new connection takes time, which you can avoid if you 

reuse an existing connection.

• You can also find other examples in the Java language itself. 
• The valueOf method of the Integer class, for example, caches the values 

between -128 and 127.



61

Iterators
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Code Tuning – Iterators

• Common now to use Java iterators
• Is a good refactoring, but depending…
• for (String value: strings) { // Do something useful here }

• a new iterator instance will be created 
int size = strings.size(); 
for (int i = 0; i < size; i++) { 

String value: strings.get(i); 
// Do something useful here 

}



Onward to … CPSC 331 Data 
Structures.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/
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