
Interfaces
CPSC 219: Introduction to Computer Science for Multidisciplinary
Studies II
Fall 2023

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Thursday, 25 October 2023

Copyright © 2023

2

Interfaces

• An interface is a description of a list of things to fulfill

3

Interfaces

• An interface is a description of a list of things to fulfill

• If a class implements an interface it is declaring it fulfills this functionality

4

Interfaces

• In fact in Java these are all implicitly abstract

5

Interfaces

• The interface and the methods must all be public

6

Interfaces

• Every instance member is a constant (even if you don’t put in final or static)

• Class member variables must be given a value (since they are constants)

7

Interfaces

• You can have concrete methods, only if they are static

8

Interfaces

• You can implement multiple interfaces

9

Interfaces

• Interfaces can extend interfaces

10

Interfaces

• What is the purpose of this tool?

11

Interfaces

• What is the purpose of this tool?

• Code-reuse? (not really as static/constants methods aren’t real purpose)

• Shared state? (there are no instance variables)

• Shared behaviour? (we don’t inherit concrete methods (except static))

12

Interfaces

• What is the purpose of this tool?

• Code-reuse? (not really as static/constants methods aren’t real purpose)

• Shared state? (there are no instance variables)

• Shared behaviour? (we don’t inherit concrete methods (except static))

• Shared functionality – We know that the class must fulfill the (abstract)
methods outlined. A lot of shared API concepts work this way.

• Multiple functionalities – We can guarantee functionality of different
interfaces.

13

Interfaces

• Inheritance and polymorphism comes with tight coupling

• Coupling was to our benefit in reducing code for state/behaviour

• But just because things are capable of the same functions does not mean
that they have any state/behaviour that is shared

• Through interfaces we can outline and guarantee (but not share)
behaviour, without coupling

• Yes each implementing class is coupled tightly to the interface, but not to other
classes.

14

Example Interface vs Extends

• We can create for ourselves an interface, we want everything that uses this interface to
fulfill a draw function

• Done correctly we should have comments that explicitly describe what the implementing
class should be fulfilling

15

Example Interface vs Extends

• We can make abstract class for a Shape and declare that it should implement the draw
function and getArea functions

16

Example Interface vs Extends

17

Example Interface vs Extends

18

Example Interface vs Extends

• We can also make a non-shape class implement
the Drawable interface.

• There is no coupling here to any Shape class, only
to the Draw interface

Drawables: Draw
LIST

item1
item2
△
○

Shapes: Draw and area
△
10.0
○
78.53981633974483

20

Existing Interfaces

• My favourite interface is Comparable

• Makes objects sortable

• https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

• Usage:

• You must fulfill that the class has
• returns -1 -- if this Person should be before other Person

• returns 0 -- if this Person is equal to other Person

• returns -1 -- if this Person should be after other Person

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

21

Existing Interfaces

• We can make our running example of
a Person class to sort by the String
ordering that exists for name

• String already implements
Comparable<String>

22

Existing Interfaces

• [Person(Bob,99),
Person(Carol,1),
Person(Alex,33)]

• We use Collections.sort(list)
• [Person(Alex,33),

Person(Bob,99),
Person(Carol,1)]

23

Existing Interfaces

• Or we can switch it up to sort by
name, but if the names are equal than
we will sort by id

24

Existing Interfaces

• [Person(Bob,99),
Person(Bob,1),
Person(Alex,33)]

• We use Collections.sort(list)
• [Person(Alex,33),

Person(Bob,1),
Person(Bob,99)]

25

Existing Interfaces

• However, we can have only one
natural ordering per class

• But we can make separated
sorters (Comparators)

• implements Comparator<Class>
• Has to fulfill

• int compare(Class c1, Class c2)
• With same return as previously but

note this is c1, and parameter is c2

26

Existing Interfaces

• However, we can have one natural
ordering per class

• But we can make separated
sorters (Comparators)

• implements Comparator<Class>
• You now need accessors (you

can’t seen any private class
instance members)

27

Existing Interfaces

• [Person(Bob,99), Person(Bob,1),
Person(Alex,33)]

• Collections.sort(list) -> natural
• [Person(Alex,33),

Person(Bob,99), Person(Bob,1)]
• Collections.sort(list, comparator)
• [Person(Alex,33), Person(Bob,1),

Person(Bob,99)]

28

Interfaces

• Shared functionality – We know that the class must fulfill the (abstract) methods
outlined.

• An API lets anyone code that decides it wants to fulfill those guarantees to jump on
board (like Comparable) and other code built around this interface becomes available.

• Why is this like an API? (API -> Application Programming Interface)

• For android google used Oracle’s API’s (but wrote own code underneath)

• Copyrightable?

• https://en.wikipedia.org/wiki/Oracle_America,_Inc._v._Google,_Inc.

• Multiple functionalities – We can guarantee functionality of different interfaces.

https://en.wikipedia.org/wiki/Oracle_America%2C_Inc._v._Google%2C_Inc

29

Java Collections

• The Java Collections Framework is a collection of interfaces and classes which helps in storing and
processing the data efficiently.

• This framework has several useful classes which have tons of useful functions which makes a
programmer task super easy.

• Certain behaviour in these Collections ‘comes for free’ if we fulfill equals, hashCode, and more-so
the interfaces Comparable/Comparator

• You’ve been using one since 1501  ArrayList

• This is a Collection that fulfills the List interface

• We’ll also look at classes that fulfill the Set, Queue, and Map interfaces as well

30

Java Collection Interface

public interface Collection<E> extends Iterable<E>

• interface Iterable<E> lets us make loops like for(E object: iterable_E_object){ … }

1. boolean add(E e) add item E to collection (Boolean for success)

2. boolean remove(Object o) remove Object o from collection (Boolean for success)

3. boolean contains(Object o) is Object o in collection

4. void clear() empty the collection

5. boolean isEmpty() is collection empty

6. int size() how many items in collection

31

Java Collection Interface

public interface Collection<E> extends Iterable<E>

• interface Iterable<E> lets us make loops like for(E object: iterable_E_object){ … }

1. boolean add(E e) add item E to collection (Boolean for success)

2. boolean remove(Object o) remove Object o from collection (Boolean for success)

3. boolean contains(Object o) is Object o in collection

4. void clear() empty the collection

5. boolean isEmpty() is collection empty

6. int size() how many items in collection

RELY on equals(Object o) to be overridden if want to compare Object’s based on contents

32

Java List Interface

public interface List<E> extends Collection<E>

Store things in a sequential list (indexed from 0 to size()-1), no empty locations size()==stored items

1. boolean add(int index, E element) put item in index and shift everything in way up indices

2. E get(int index) get item at index

3. E remove(int index) remove item E at index

4. int indexOf(Object o) what is index of Object O

5. int lastIndexOf(Object o) what is last index of Object O

33

Java ArrayList/LinkedList

public class ArrayList<E> extends AbstractList<E> implements List<E>

• Uses a hidden Array (E[]) that is managed in the private implementation

public class LinkedList<E> extends AbstractSequentialList<E> implements List<E>

• Uses a object structure of linked Node objects where each stores and E data and points to next
Node (Java’s is Doubly-Linked  A Node points to next and previous Nodes)

34

Java Set Interface

public interface Set<E> extends Collection<E>

Store things (without indices), only store one of each item (based on equals(Object o))

Some implementing classes

HashSet (storage in hidden array E[]),

TreeSet (storage in hidden tree structure)

The key for this interface is if you attempt to add something that is already in the class
implementing Set, that the set is unchanged

35

Java Map Interface
public interface Map<K,V>

• NOT A COLLECTION, You store values of type V, according to some key of type K

1. V put(K key, V Value) put value of type V at storage spot of key of type K

2. V get(Object key) get value of type V stored at given key to type K

3. V remove(Object key) remove Object o from map (V value removed)

4. void clear() empty the map

5. boolean isEmpty() is map empty

6. int size() how many items in collection

7. Set<K> keyset() set of keys of type K

8. Collection<V> values() collection of V values stored in map

36

Java Map Interface
• A Map makes use of equals(Object o) to determine if a key K has been used in the map

• Often a map will use the key’s hashCode() first, and only if two hashCodes are equal will it
then double-check deeper by comparing using equals()

• Maps work like Python’s dictionaries (but with a lot more syntax than python requires)

• Common maps are TreeMap, and HashMap

Onward to … JavaFX

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Interfaces
	Interfaces
	Interfaces
	Interfaces
	Interfaces
	Interfaces
	Interfaces
	Interfaces
	Interfaces
	Interfaces
	Interfaces
	Interfaces
	Interfaces
	Example Interface vs Extends
	Example Interface vs Extends
	Example Interface vs Extends
	Example Interface vs Extends
	Example Interface vs Extends
	Slide Number 19
	Existing Interfaces
	Existing Interfaces
	Existing Interfaces
	Existing Interfaces
	Existing Interfaces
	Existing Interfaces
	Existing Interfaces
	Existing Interfaces
	Interfaces
	Java Collections
	Java Collection Interface
	Java Collection Interface
	Java List Interface
	Java ArrayList/LinkedList
	Java Set Interface
	Java Map Interface
	Java Map Interface
	Onward to … JavaFX

