
CPSC 219: Introduction to Computer Science for
Multidisciplinary Studies II
Assignment 3: JavaFX, GUI, Event-Driven Design, SceneBuilder,
Object-Oriented Java

Weight: 10%

Collaboration

Discussing the assignment requirements with others is a reasonable thing to do and an
excellent way to learn. However, the work you hand in must ultimately be your work. This is
essential for you to benefit from the learning experience and for the instructors and TAs to
grade you fairly. Handing in work that is not your original work but is represented as such is
plagiarism and academic misconduct. Penalties for academic misconduct are outlined in the
university calendar.

Here are some tips to avoid plagiarism in your programming assignments.

1. Cite all sources of code you hand in that are not your original work. You can put the citations into comments in
your program. For example, if you find and use code found on a website, include a comment that says, for
example:

The following code is from
https://www.quackit.com/python/tutorial/python_hello_world.cfm.

Use the complete URL so that the marker can check the source.

2. A tool like chat-GPT can be used to improve small code blocks. For example, five lines of code. If you get help
from code assistance like Chat-GPT, you should comment above the block of code you requested assistance on
debugging or improving and cite the tool used to get that suggestion. Using a tool like chat-GPT to write the
majority of your assignment requirements will be treated as plagiarism if found without citation, and with
citation, it will be treated as 0 for the component the student did not complete. Code improvement of short
length will get credit if commented/cited properly.

3. Citing sources avoids accusations of plagiarism and penalties for academic misconduct. However, you may still
get a low grade if you submit code not primarily developed by yourself. Cited material should never be used
to complete core assignment specifications. Before submitting, you can and should verify any code you are
concerned about with your instructor/TA.

4. Discuss and share ideas with other programmers as much as you like, but make sure that when you write your
code, it is your own. A good rule of thumb is to wait 20 minutes after talking with somebody before writing
your code. If you exchange code with another student, write code while discussing it with a fellow student, or
copy code from another person’s screen, this code is not yours.

5. Collaborative coding is strictly prohibited. Your assignment submission must be strictly your code. Discussing
anything beyond assignment requirements and ideas is a strictly forbidden form of collaboration. This includes
sharing code, discussing the code itself, or modelling code after another student's algorithm. You can not use
(even with citation) another student’s code.

6. Making your code available, even passively, for others to copy or potentially copy is also plagiarism.

7. We will look for plagiarism in all code submissions, possibly using automated software designed for the task.
For example, see Measures of Software Similarity (MOSS - https://theory.stanford.edu/~aiken/moss/).

8. Remember, if you are having trouble with an assignment, it is always better to go to your TA and/or instructor
for help rather than plagiarizing. A common penalty is an F on a plagiarized assignment.

Late Policy

Assignments will be accepted up until 48 hours late with a penalty. From 0 < ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 24 will
result in 10% penalty. From 24 < ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 48 will result in a 20% penalty.

Goal

Writing an Event-Driven Object-Oriented GUI program in Java using JavaFX and SceneBuilder
2.0. Continue to use Git version control properly to store this project.

Technology

Java 20, Git, JavaFX, SceneBuilder 2.0

Submission Instructions

You must submit your assignment electronically using Gitlab and D2L. Use the Assignment 2
dropbox in D2L for a final codebase electronic submission. You will also share a link to your
GitLab codebase with your TA in that D2L submission. In D2L, you can submit multiple times
over the top of a previous submission. Do not wait until the last minute to attempt to submit.
You are responsible if you attempt this and time runs out. Your assignment must be completed
in Java (not Kotlin or others) and be executable with Java version 20. You must use Gitlab
hosted at https://csgit.ucalgary.ca/ (not GitHub or another Git host). You must use JUnit 5 and
not other unit-testing libraries.

Description
You are going to complete a Map Making program from your MonstersVsHeroes simulation
game. That game was relatively simple to that of modern fantasy-world video games and had
have no graphical portions or any real degree of user input. You will be creating a graphical
input/output tool to edit the maps that the MonstersVsHeroes game was able to load and
simulate.

The goal of this assignment is to expose students to an Event-Driven Object-Oriented (OO)
Graphical User Interface (GUI) program. You will be provided with an existing framework of
code which is already in an OO format. This is the same framework from Assignment 2. This
means concepts of the game have been broken off from one single procedural file and stored
(encapsulated) in separate files according to their purpose. These files will be fully complete,
except for file reading which you should re-use your code from A2.

There will be a variety of OO concepts visible throughout the code. Code will be stored in
packages. Some code will be built as procedural helper classes like the incomplete Reader.
Other code will be Enum types like Direction/WeaponType/Symbol and internal State
enumerations. Some code will be a regular object-type like World. Some code will be abstract
like Entity, and other code will extend that abstract code like Wall/Hero/Monster. This variety
of OO code will help students understand a variety of OO concepts including encapsulation,
polymorphism, enumerations, abstract, and static.

You will add a new package at mvh.app with a Main/MainController/Main.fxml to create a
GUI. This GUI will be designed to allow the user to create/save/load/edit a world file.

Do not change the existing portions of the code. Create the new files only where indicated, and
add functionality as specifically requested. SHOULD NOT IMPORT ANY OTHER LIBRARIES
BEYOND java.io/java.util and JavaFX libraries FOR THIS ASSIGNMENT and you will get not credit
for code copied from other places (cited code will get a grade of 0 as you are required to
complete the required functions yourself).

Git Requirement: For this assignment we will have the requirement that you upload your code
to the university csgit.ucalgary.ca hosting site as a private repository shared with your TA (in
addition to submitting it via D2L dropbox). The minimum expectation for Git usage is that when
you submit your code that the TA can go and view it in Gitlab and see that you’ve made
multiple commits as you edited it before the submission deadline to D2L. To use
csgit.ucalgary.ca you will need a functional UofC IT account username/password.

You will be required to submit your regular Main.java/MainController.java/Main.fxml source
files.

To Run My GUI

It is sufficient to run your GUI through your IDE as a JavaFX program.

However, it is also possible to run it with something like the following if you only use the base
JavaFX components.

java --module-path "C:\Program Files\Java\javafx-sdk-21.0.1\lib" --add-modules
javafx.controls,javafx.fxml mvh.app.Main

I executed this in yourprojectname\target\classes folder after building my project.

Your --module-path will be different than mine. I downloaded the latest JavaFX sdk from
https://gluonhq.com/products/javafx/ for Windows (my OS) and installed it. Then I used the
location of installation "C:\Program Files\Java\javafx-sdk-21.0.1\lib" to run my program.

https://gluonhq.com/products/javafx/

You should include a readme.md instruction with your code that includes this run execution
description so that you remember in the future how to run your project code.

You should also create a packaged CPSC219F23A3.jar file that you will submit. Jar files are an
artifact that you can create with your IDE. They are zip files that store your project .class files
and other parts of program inside of it. I can run a jar file with my compiled project inside with
the following.

java --module-path "C:\Program Files\Java\javafx-sdk-21.0.1\lib" --add-modules
javafx.controls,javafx.fxml -jar CPSC219F23A3.jar

Example world.txt file

3
3
0,0,MONSTER,M,10,S
0,1
0,2
1,0
1,1
1,2
2,0
2,1
2,2,HERO,H,10,3,1

3 rows x 3 columns grid. First entry is rows, second is columns.

Monster is at (0,0) location with symbol M, health 10, and weapon type of (S)word. Other
WeaponType options are (C)lub and (A)xe. Sword has attack strength of 4, Axe 3, and Club 2.(
All Monsters have a static armour strength of 2 that is not entered via the file.)

Hero is at (2,2) location with symbol H, health 10, attack strength 3, armour strength 1.

When loaded in the game, this would look like the following (note, this is a 3x3 world in the file,
but we are drawing it for viewing with external walls outside the valid array indices as #):

Where # are Walls. M is a Monster, and H is a Hero.

GUI Requirements

Title

1. Name of program and version

Menu Bar

1. Menu Item (File)
a. Load file

i. Load file from FileChooser (can re-use Reader code from A2)
b. Save file

i. Save file to FileChooser (will need to write this code)
c. Quit

2. Menu Item (Help)
a. About

i. Alert with info about you/program

Create World

1. Row/Column input, button to create

Add Hero/Monster

1. Symbol
2. Health
3. WeaponType or Weapon/Armor

Delete Entity

1. Replace with null in world

View World

1. See world you are editing and update after each change

View details of Entity

1. Give location and get info about entity at row/column

Status

1. At bottom of window (will show success/failure messages)

There is no strict requirement on how your program looks. Or what buttons/labels/layouts you choose.

Here’s an example of what I may have created to complete this assignment. Your solution does not have
to look like mine.

Basic view with 3 panels and menu bar.

The menu options. I added both a ‘Save’ at world.txt and a ‘Save As’.

Launch the about

The info

What does a new world look like. (Note, my view of world is more complicated than I expect students to
do. Student can just write the worldString to text output instead of this more complex Grid setup I have
designed.)

What if something goes wrong!

I have a left/right status outputs. I use left for the user actions and right for internal issues like drawing
world or issue getting details about entity.

Added a monster and seeing the info about it. (As before, my world view is more complicate than
expected for students. I add monsters by clicking primary button and remove when clicking secondary
button on mouse. I view monsters on ‘mouse over’ a grid spot. You can add by user typed row/column
location, and view in the same way. No need to use ‘mouse click/over’ methods on a Grid like I have.)

Added a hero and seeing the info about it.

Bonus

Change this map editor into a game simulator. Users should be able to

1. Start simulation (try to run to inactive)
2. Stop simulation (if simulation is started this will stop it)
3. Advance 1 simulation step (if active)
4. Edit world (both active/inactive)
5. See a counter of simulation steps updates as simulation progresses
6. Still able to save/load a partially simulated world

The world should update as it is being played on the screen. Use a time delay on the continuous play
option so that users are able to view updates in a reasonable way that they can then stop it when they
want to.

Additional Specification

• You must comment your code with Javadoc comments.
• Use in-line comments to indicate blocks of code and describe decisions or complex expressions.
• Do not use inline conditionals
• Put your name, date, and tutorial into the comments for the Javadoc of the class for your TAs to

identify your work.
• Do not rename the provided files. You must you exactly the request filenames.
• You should not import ANY libraries (outside java.io/java.util/JavaFX) to complete the regular

assignment. Using these could result in grade of 0 for that portion of assignment. Citing code
from internet to complete a function will also result in 0.

• Use constants appropriately. Your TA may note one or two magic numbers as a comment, but
more will result in lost marks.

• Do not change provided code without discussion with instructor. If there is a bug, or something
is broken, the instructor should be informed to fix this issue.

• You should perform error for user input in the GUI you create and output messages to the
status area. The provided code should be designed to assume the rest of program is only
inputting valid inputs.

Grading
The total grade is out of 50. Bonus marks can reach up to 55 marks if completed.

GUI Files (out of 40) [TAs will grade partially by running your code and interacting with it]
Title 1
Menu Bar Parts 1
Menu Bar Load Operation 4
Menu Bar Save Operation 4
Menu Bar Quit Operation 1
Menu Bar About Operation 2
Create World 3
Add Hero/Monster 5

Add Hero/Monster 5
Delete Entity 2
View World 4
View details of Entity 2
Status 2
Readme.md 2
.jar file 2
Gitlab Usage (out of 5)
 Gitlab account exists, private project exists, at least 1 commit, small commits, regular commits
Style/Commenting (out of 5)

Name/Date/Tutorial, Functions commented, Javadoc, Inline commenting, doesn’t use inline
conditionals, limited magic numbers, don’t change function names, don’t change filenames, etc.

BONUS MARKS (out of 5)
• Start simulation (try to run to inactive) 1
• Stop simulation (if simulation is started this will stop it) 1
• Advance 1 simulation step (if active) 1
• Edit world (both active/inactive) 1
• See a counter of simulation steps updates as simulation progresses 1

Invite your TA to your private!!!! Csgit.ucalgary.ca project for the assignment

Submit the following using the Assignment 3 Dropbox in D2L

1. Main.java/MainController.java/Main.fxml (all should be mvh.app as their package)
a. Include Reader.java (can be your A2 Reader, or what you made for A3 if you didn’t finish

this in A2, you might also just have this code in your MainController)
b. Include a Writer.java (this is new from A2, but you may have code in your

MainController instead)
c. Include World.java if you edited it as well

2. readme.md (explains how to run program and jar file base on user having Open JavaFX)
3. CPSC219F23A3.jar
4. Name of your private csgit.ucalgary.ca repository that you’ve added your TA to as at least a

Developer

