
CPSC 219: Introduction to Computer Science for
Multidisciplinary Studies II
Assignment 1: Procedural Java, Git, and JUnit

Weight: 10%

Collaboration

Discussing the assignment requirements with others is a reasonable thing to do and an
excellent way to learn. However, the work you hand in must ultimately be your work. This is
essential for you to benefit from the learning experience and for the instructors and TAs to
grade you fairly. Handing in work that is not your original work but is represented as such is
plagiarism and academic misconduct. Penalties for academic misconduct are outlined in the
university calendar.

Here are some tips to avoid plagiarism in your programming assignments.

1. Cite all sources of code you hand in that are not your original work. You can put the citations into comments in
your program. For example, if you find and use code found on a website, include a comment that says, for
example:

The following code is from
https://www.quackit.com/python/tutorial/python_hello_world.cfm.

Use the complete URL so that the marker can check the source.

2. A tool like chat-GPT can be used to improve small code blocks. For example, five lines of code. If you get help
from code assistance like Chat-GPT, you should comment above the block of code you requested assistance on
debugging or improving and cite the tool used to get that suggestion. Using a tool like chat-GPT to write the
majority of your assignment requirements will be treated as plagiarism if found without citation, and with
citation, it will be treated as 0 for the component the student did not complete. Code improvement of short
length will get credit if commented/cited properly.

3. Citing sources avoids accusations of plagiarism and penalties for academic misconduct. However, you may still
get a low grade if you submit code not primarily developed by yourself. Cited material should never be used
to complete core assignment specifications. Before submitting, you can and should verify any code you are
concerned about with your instructor/TA.

4. Discuss and share ideas with other programmers as much as you like, but make sure that when you write your
code, it is your own. A good rule of thumb is to wait 20 minutes after talking with somebody before writing
your code. If you exchange code with another student, write code while discussing it with a fellow student, or
copy code from another person’s screen, this code is not yours.

5. Collaborative coding is strictly prohibited. Your assignment submission must be strictly your code. Discussing
anything beyond assignment requirements and ideas is a strictly forbidden form of collaboration. This includes
sharing code, discussing the code itself, or modelling code after another student's algorithm. You can not use
(even with citation) another student’s code.

6. Making your code available, even passively, for others to copy or potentially copy is also plagiarism.
7. We will look for plagiarism in all code submissions, possibly using automated software designed for the task.

For example, see Measures of Software Similarity (MOSS - https://theory.stanford.edu/~aiken/moss/).

8. Remember, if you are having trouble with an assignment, it is always better to go to your TA and/or instructor
for help rather than plagiarizing. A common penalty is an F on a plagiarized assignment.

Late Policy

Assignments will be accepted up until 48 hours late with a penalty. From 0 < ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 24 will
result in 10% penalty. From 24 < ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 48 will result in a 20% penalty.

Goal

Writing a first program in Java with a standard CPSC 217/231 procedural structure. Use Git
version control properly to store this project. Perform unit testing via JUnit to establish the
correctness of portions of the assignment code created.

Technology

Java 20, Git, JUnit 5

Submission Instructions

You must submit your assignment electronically using GitLab and D2L. Use the Assignment 1
dropbox in D2L for a final codebase electronic submission. You will also share a link to your
GitLab codebase with your TA in that D2L submission. In D2L, you can submit multiple times
over the top of a previous submission. Do not wait until the last minute to attempt to submit.
You are responsible if you attempt this, and time runs out. Your assignment must be completed
in Java (not Kotlin or others) and be executable with Java version 20. You must use Gitlab
hosted at https://csgit.ucalgary.ca/ (not GitHub or another Git host). You must use JUnit 5 and
not other unit-testing libraries.

Description
You will complete a Java program which plays a Tic Tac Toe game. This game will be
procedurally designed (no classes and objects and completely within one Board.java file). This
game must use the exact function names requested in this assignment document. You will
complete these functions and then combine them to create a Tic Tac Toe game that uses these
functions. While creating this game, you will be tasked with creating unit tests for these
functions using JUnit 5. At the same time, you will be expected to store your code in a private
repository at csgit.ucalgary.ca using Git as you work on the assignment.

The game of X’s and O’s, Tic Tac Toe, or Noughts and Crosses has many different names. Two
players are given a square array of size three and take turns entering their symbol into the grid.
The winner is the first to three in a row (across, down, or diagonal). As mentioned in class, this
game is solved. That is, there is a known strategy for three-by-three such that a ‘perfect’ player
can never lose the game. Two ‘perfect’ opposing players will always play to a draw.

We will be implementing a flexible version of the game. The user will be able to play the base
game on a three-by-three grid but will also have the option to play with row and column
combinations selected from the sizes of 3, 4, or 5. For example, boards can be three-by-five,
four-by-three, or even five-by-five in size. The user will also be able to select a win length equal
to or greater than the standard win length of three. The longest row or column will limit the
largest size. e.g., A five-by-five board could have win lengths of 3, 4, or 5 chosen.

You will be provided with three files. A Game.java file contains the game logic you do not need
to change, a Starter.java file in which you must add the requested functions and a
BoardTest.java file where you will create your JUnit tests. The Game.java code should not be
changed unless communication with the instructor approves a change. The Game.java file will
look for the functions inside a file called Board.java. You must rename the Starter.java file to
Board.java and change the internal class from public class Starter to public class Board inside
the file.

About 12 different functions require completion for the Tic Tac Toe game to operate correctly.
Your job will be to complete the implementation of Board.java by implementing each of its
methods to the specifications indicated in the assignment. You must modify a BoardTest.java
JUnit 5 file to test these completed functions. You will also be expected to properly comment
Board.java and BoardTest.java, use regular version control hosted at csgit.ucalgary.ca to track
as you change things and submit these Board.java and BoardTest.java in D2L.

Do not change the existing portions of the code in Game.java. If you attempt the bonus, create
a new GameBonus.java file, BoardBonus.java file, and BoardBonusTest.java file in addition to
the files for the non-bonus version. You will lose those marks if you break your non-bonus
program while doing the bonus. YOU SHOULD NOT IMPORT ANY OTHER LIBRARIES FOR THIS
ASSIGNMENT, and you will not get credit for code copied from other places.

Git Requirement: As we move through topics, we will introduce Git as a version control system.
For this assignment, we will require you to upload your code to the university csgit.ucalgary.ca
hosting site as a private repository shared with your TA (in addition to submitting it via D2L
Dropbox). If you are comfortable with Git before we cover it, you can start this process early and
do all your code storage in Gitlab. If Git is new to you, you will be taught it and won’t expect
regular commits for Board.java but will expect them for BoardTest.java.

The minimum expectation for Git usage is that when you submit your code, the TA can go and
view it in Gitlab and see that you’ve made multiple commits as you edited it before the
submission deadline to D2L. To use csgit.ucalgary.ca, you will need a functional UCIT account
username/password.

 Example Tic-Tac-Toe Boards. (MxN -> M is rows, N is columns)

Program Coding Requirement:

The 11 functions you must complete are as follows (all must be public static functions). I
recommend first creating all 11 function definitions (you don’t need to finish the inside of any
immediately). You can either Javadoc comment ** *\ the functions as you make them or do
this later. Remember to inline \\ comment your functions as well. At the same time, don’t
forget to add your name and student info to the Board.java file for your TA. These all have
marks in the grading rubric.

(Note: When we say integer, we will mean the primitive type int for this assignment.)

Function Name: createBoard

Parameters: rows: integer, columns: integer

Return: 2D integer array

Assume rows/columns are valid positive integers in the inclusive range [3,5].

Create and return a 2D integer array for the board of the game. Filled with EMPTY = 0 pieces.

Rows should be the size of the first dimension of the array and columns the second dimension.

Board.createBoard(3,3);

0 0 0
0 0 0
0 0 0

EMPTY = 0, X = 1, O = 2

3x3 – start of game

0 0 0
0 0 0
0 0 0

4x3 – win in row 1 for X

0 0 0
1 1 1
0 2 0
0 0 2

4x5 – win \ diagonal for O

2 0 1 0 0
0 2 0 1 0
0 0 2 0 0
0 0 0 0 0

4x4 – game undecided

0 0 0 0
1 1 0 1
0 2 0 0
0 0 2 0

3x3 full board

2 1 1
2 1 2
1 2 2

Function Name: rowCount

Parameters: board: 2D integer array

Return: integer

Assume the board is a valid 2D int array.

Take in a board and return the integer number of rows the board has (i.e. the size of the first
dimension of the array).

Board.rowCount(board) == 4;

0 0 0
1 1 1
0 2 0
0 0 2

Function Name: columnCount

Parameters: board: 2D integer array

Return: integer

Assume the board is a valid 2D int array.

Take in a board and return the integer number of columns the board has (i.e. the size of the
second dimension of the array).

Board.columnCount(board) == 3;

0 0 0
1 1 1
0 2 0
0 0 2

Function Name: canPlay

Parameters: board: 2D integer array, row: integer, column: integer

Return: boolean

Assume the board is a valid 2D int array and row/column are valid indices in the board.

Return boolean True if the location in the board at the indicated row/column index is open
(EMPTY).

Board.canPlay(board,0,0) == true;

Board.canPlay(board,1,1) == false;

0 0 0
1 1 1
0 2 0
0 0 2

Function Name: play

Parameters: board: 2D integer array, row: integer, column: integer, piece: integer

Return: nothing (void)

Assume the board is a valid 2D int array, row/column are valid indices in the board, and the
piece is X==1/O==2. Assume the location (row, column) is EMPTY in the board.

Play by assigning a piece in the location on the board at the indicated row/column.

Board.play(board,0,0,X) ;

0 0 0
1 1 1
0 2 0
0 0 2

Function Name: full

Parameters: board: 2D integer array

Return: boolean

Assume the board is a valid 2D int array.

Return true if the board is filled with non-EMPTY pieces. Otherwise, false.

Board.full(board) == true;

2 1 1
2 1 2
1 2 2

Function Name: winInRow

Parameters: board: 2D integer array, row: integer, piece: integer, length: integer

Return: boolean

1 0 0
1 1 1
0 2 0
0 0 2

Assume the board is a valid 2D int array, the row is a valid index in the board, the piece is
X==1/O==2, and the length is a valid win length for a given size.

Look at the indicated row at the given index on the board. If that row has at least length
consecutive entries with a given type of piece (X/O), then return true; otherwise, false.

Board.winInRow(board, 0, X, 3) == false;

Board.winInRow(board, 0, O, 3) == false;

Board.winInRow(board, 1, X, 3) == true;

Board.winInRow(board, 1, O, 3) == false;

Function Name: winInColumn

Parameters: board: 2D integer array, column: integer, piece: integer, length: integer

Return: boolean

Assume the board is a valid 2D int array, the column is a valid index in the board, the piece is
X==1/O==2, and the length is a valid win length for a given size.

Look at the indicated column at the given index on the board. If that column has at least length
consecutive entries with a given type of piece (X/O), then return true; otherwise, it is false.

Board.winInColumn(board, 0, X, 3) == true;

Board.winInColumn (board, 0, O, 3) == false;

Board.winInColumn (board, 0, X, 4) == false;

Board.winInColumn (board, 1, X, 3) == false;

Function Name: winInDiagonalBackslash

Parameters: board: 2D integer array, piece: integer, length: integer

0 0 0
1 1 1
0 2 0
0 0 2

1 0 0
1 2 1
1 2 0
0 0 2

Return: boolean

Assume the board is a valid 2D int array, and the piece is X==1/O==2, and the length is a valid
win length for a given size.

Look at all backward slash \ diagonals in the board. If any backward slash \ diagonals have at
least length consecutive entries with a given type of piece (X/O), then return true; otherwise,
false.

Function Name: winInDiagonalForwardSlash

Parameters: board: 2D integer array, piece: integer, length: integer

Return: boolean

Assume the board is a valid 2D int array, the piece is X==1/O==2, and the length is a valid win
length for a given size.

Look at all forward slash/diagonals on the board. If any forward slash/diagonals have at least
length consecutive entries with a given type of piece (X/O), then return true; otherwise, false.

Function Name: hint

Parameters: board: 2D integer array, piece: integer, length: integer

Return: 1D integer array (length 2) where array stores {row, column} of hint

Assume the board is a valid 2D int array, the piece is X==1/O==2; length is a valid win length for
a given size

The hint scans across each row left to right, starting at the top row and working down in rows. It
returns a 1D integer array {row, column} containing the first hint found for the piece given to
win. It does not examine for other hints, like blocking the opponent’s win or other hints. The only
hint returned will be the first hint found that wins the game on the next play for the player. It
returns {-1, -1} if it does not find a hint.

You are required to follow this pseudo-code for the hint function:

For every row on the board board
 For every column on the board
 If we can play at this row and column
 Play the player’s piece
 If the player has won the game
 Remove the player’s piece from the last played location
 Return the row and column of the hint
 Otherwise, nobody won the game,

Remove the player’s piece from the last played location
Default return -1 for both row and column

Board.hint(board, X, 3) == new int[]{1,0}

Unit Testing Requirement:

For the second part of the assignment, we will be adding in Unit Testing. This will be accomplished via
JUnit5. You must create and submit a modified BoardTest.java file using JUnit5. This file will consist of
unit tests written to test the above 11 functions plus the public static BigInteger factorial(int n) that is
already complete in the provided starter Game.java file. So, there are 12 different functions to test in
total.

For each function, design 1 to 5 tests. The quantity of these tests you create will be based on your
decision of what is necessary to test for a function. To determine what to test, you should read the
function requirements in this document. Do not test for things that you are told to assume are correct
inputs. For example, don’t test createBoard for input sizes that are 2 or 6. The valid range of input sizes is
3,4,5 for row/column. In general, all functions are expected to have correct, valid inputs, so you will be
testing if the output of your function is correct when given a valid input.

A couple of simple functions will need 1 or 2 tests, but you will notice many will need more tests than 5.
I don’t want you to spend time making too many tests, so I’ve limited the required test quantity for
grading to 5 at most for each. (You are free to make more, but the TAs will only mark the five you submit
for each). Your goal with unit tests is to make up a variety of tests that demonstrate different challenges
for a function. TAs will look for a range of variety of tests for a full grade. If they see five tests for a
function that are almost identical in purpose, then they will not get a full grade.

Remember, a good unit test examines one thing. So when the test fails, you know exactly what to look
for to fix it. The goal should be one input and one output per test. Resist the urge to make tests that
explore more than one input, as these will not get a full grade.

Bonus

To complete the bonus, you must create a second GameBonus.java file, BoardBonus.java file, and
BoardBonusTest.java file.

A win will now look like a Tetris L instead of a line. Requiring this on a three-by-three board would not
make any sense, so 3x3 boards will retain the old 3 in a row. But if any length of the board is 4 or 5, then
a win length selection of 4 or 5 will result in a three-long L shape. The new win types should look like the
following.

1 0 0
0 2 1
1 2 0
0 0 2

Modify the game functions such that a win (for size 4/5 boards now) requires three pieces in a sequence
and one more piece perpendicular to the end of the sequence to complete an L shape. As a hint, a way
to do this would be to track the start and end of when you find three pieces in a sequence. Then, check
if this extra perpendicular piece exists relative to either end location of the sequence.

Create/modify your existing TicTacToeTest.java to create a new TicTacToeBonusTest.java file to check
for these new requirements. You should only need to modify the test winInNNNNN() functions.

Submit your five code files for grading—two for the regular assignment and these three new files for the
bonus.

Additional Specification

• You must comment code with Javadoc comments.
• Use in-line comments to indicate code blocks and describe decisions or complex expressions.
• Do not use inline conditionals.
• Break and continue are generally considered bad form when learning to program. As a result,

you are NOT allowed to use them when creating your solution for this assignment. Their use can
generally be avoided by combining if statements and writing better conditions on your while
loops. You are allowed to use return within a loop inside a function.

• Put your name, date, and tutorial into the comments for the class's Javadoc for your TAs to
identify your work.

• Do not rename the provided files. You must use exactly the requested filenames.

• You should not import ANY libraries to complete the regular assignment. Using these could
result in a grade of 0 for that portion of the assignment. Citing code from the internet to
complete a function will also result in 0.

• Use constants appropriately. Your TA may note one or two magic numbers as a comment, but
more will result in lost marks.

• Do not change the provided code without discussion with the instructor. If a bug or something is
broken, the instructor should be informed to fix this issue.

• You should not perform error checking in this assignment when writing your functions. The
provided code should be designed to assume the rest of the program only inputs valid inputs
when calling a function.

• You must use loops for your win condition checking. Giant nest if/else chains without any
looping will not be accepted for full marks.

Grading
The total grade is out of 50. Bonus marks can reach up to 55 marks if completed.
Board.java (out of 25)
 createBoard 2
 rowCount 1
 columnCount 1
 canPlay 1
 play 1
 full 2
 winInRow 3
 winInColumn 3
 winInDiagonalForwardSlash 4
 winInDiagonalBackSlash 4
 hint 3
BoardTest.java (out of 15)
 createBoard 1
 rowCount 0.5
 columnCount 0.5
 canPlay 0.5
 play 0.5
 full 1
 winInRow 2
 winInColumn 2
 winInDiagonalForwardSlash 2
 winInDiagonalBackSlash 2
 hint 2
 factorial 1
Gitlab Usage (out of 5)

A Gitlab account exists, a private project exists, at least one commit, small commits (regular
commits for majority of this grade)

Style/Commenting (out of 5)

Name/Date/Tutorial, Functions commented, Javadoc, Inline commenting, doesn’t use inline
conditionals, doesn’t use break, limited magic numbers, don’t change function names, don’t
change filenames except Starter.java to Board.java, etc.

BONUS MARKS
You must have Gitlab 5/5 to get any bonus marks.
GameBonus.java (shouldn’t have to touch this file after making a renamed copy)
BoardBonus.java (out 2.5)
BoardBonusTest.java (out of 2.5)

Invite your TA to your private!!!! csgit.ucalgary.ca project for the assignment

Submit the following using the Assignment 1 Dropbox in D2L

1. Board.java
2. BoardTest.java
3. Link to your private csgit.ucalgary.ca repository for TA
4. GameBonus.java (only if Bonus was completed)
5. BoardBonus.java (only if Bonus was completed)
6. BoardBonusTest.java (only if Bonus was completed)

