
Structures: Lists: Complex
CPSC 217: Introduction to Computer Science for Multidisciplinary
Studies I
Winter 2023

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

January 9, 2023

Copyright © 2023

2

Slicing

3

Slicing a List

• You can produce copies and sub-lists of a list using the range of indices (:). The
following produces a copy of list from a to b-1:

names[start:end]  to
produce a sub-list

• names[:] returns a copy of names
• names[0:2] returns the first two

elements in names
• names[-2:] returns the last two

elements in names

list[a:b]
a is the starting index of the slice. The default is 0.

b is the ending index of the slice. The default is len(list).
b itself is excluded from the slice.

4

Slicing a List

• You can produce a sub-list of a list that consists of certain elements of a list
using :step in the range of indices

names[start:end:step]
 to produce a sub-list

• names[0:len(names):1] returns a
copy of list

• names[::] returns a copy of list
• names[::-1] returns a reversed list
• names[-2::] returns last two elements
• names[::2] returns a list with every

other element in names is skipped.

list[a:b:step]

a and b are defined in previous slide.

step is the amount by which a increments. The default is 1.
step be positive (increment) or negative (decrement).

5

Copy List

6

Same List

• A list variable is a reference to the list.
names<address of the first byte of the list in memory>

• When duplicating a list variable, the address is duplicated,
not the actual list.

>new_names = names

If you change names you change new_names.
Also true the other way.
>new_names[0] = “Jonathan”

>print(names[0]) → ‘Jonathan’

7

Passing List to Functions

• When passing mutable types, such as lists, to functions, remember that any
changes to the list, will be reflected in the original list in the caller’s scope.

def func2(list2):
...

def func1(list):
list2 = list
func2 (list2)

myList = […]
func1(myList)

myList

list

list2

valuesMain body

func1()

func2()

memory

Memory address is passed

8

Duplicate a List

• Many ways to create a copy of a list (also known as shallow-copy):
• Using slice:

new_names = names[:]
• Using the repetition operator:

new_names = names*1
• Using extend():

new_names = []
new_names.extend(names)

• Using a loop to duplicate the list element by element:
new_names = []
for i in range (0, len(names), 1):

new_names.append(names[i])

9

Operations

10

List Operations and Methods

11

Search/Remove List

12

Searching For Elements

• Use in to check if an item is present in a list
data = [1,2,3,4,5]
2 in data evaluates to True
8 in data evaluates to False

• Use index to determine where it is in the list
data = [11,12,13,14]
data.index(12) evaluates to 1
data.index(8) results in a ValueError

13

Removing Elements

• How can we remove an item from a list?
• Use the remove method

• Removes the first occurrence of the item
• Subsequent identical items remain in the list
• Item must exist or a ValueError will occur

x = [1,2,1,3,4,2,1]

x.remove(1)

print(x)

14

Removing Elements

• What if we want to remove all occurrences of an item from a list?

• Use a while loop:
while x in myList:

myList.remove(x)

15

Removing Elements

• What if we know the index of the item we want to remove?
• Use pop(index)
• With no parameters: Removes last item
• With one parameter: Removes item at the index specified
• Returns the item that is removed

myList = [1,2,3,4]

myList.pop()
print(myList)

myList.pop(0)
print(myList)

myList.pop(myList.index(2))
print(myList)

[1, 2, 3]

[2, 3]

[3]

16

Sorting a List

17

Sorting

• Sorting is the process of ordering elements of a list in ascending or descending
order.

[4, 2, 1, 3, 0]

[0, 1, 2, 3, 4]

[4, 3, 2, 1, 0]

• How do we sort the list?

Unordered list

Ordered list in ascending order

Ordered list in descending order

18

Sorting

• Sorting is an important task
• Needed when working with large data sets
• Frequently occurs as part of other algorithms

• Sorting has been studied extensively
• Many algorithms, some of which are quite complex

19

Sorting - Bubble Sort

General idea (ascending order)
• go through list from beginning to end

 compare adjacent elements
 swap if previous element is larger than current element

• repeat until no swaps are performed

https://www.youtube.com/watch?v=nmhjrI-aW5o
• You can download a solution: 1_Bubble.py

https://www.youtube.com/watch?v=nmhjrI-aW5o

20

Sorting - Selection Sort

General idea (ascending order): The list is initially considered entirely unordered.
• Select the smallest element in the unordered portion of list
• Remove the element from unordered portion of the list and place it at the end

of the ordered portion of the list.
• Repeat until no elements remain in the unordered portion of the list.
https://www.youtube.com/watch?v=xWBP4lzkoyM
Lets implement this!
You can download another solution: 2_Selection.py

https://www.youtube.com/watch?v=xWBP4lzkoyM

21

Sorting in Python

• Python makes sorting a list easy
• Use the sorted function

• Takes one parameter which is an unsorted list
• Returns a new list sorted into increasing order

• Use the sort(order) method
• Order is a Boolean parameter. Default is True for ascending order. False sorts in descending

order.
• Invoked on a list using dot notation
• Modifies the list

list=[0,1,6,2,10]
list.sort()
print(list) [0, 1, 2, 6, 10]

22

List Example

23

Practice Example

• Compute the median of a list of values entered by the user
• User will enter an unknown number of values
• A blank line will be used to indicate that no additional values will be entered
• If the list has an odd number of elements

• Median is the middle value
• If the list has an even number of elements

• Median is average of the two middle values

24

Practice Example Design

• read values from user and store in a list (using append)
• sort list (put numbers in ascending order)
• if list length is odd, display middle value (index = len(list)/2)
• if list length is even, display the average of two middle values (index len(list)/2

and len(list)/2 – 1)

Lets code this!

25

Tracing

26

Trace The Code 1:

def f1(list1) :
list2 = list1
for index in range(len(list1)):

list2[index] = list1[index]+1
print(list1)
print(list2)

f1([1,2,3])

[2, 3, 4]
[2, 3, 4]

27

Trace The Code 2:

def f2(list1) :
list2 = list1[:]
for index in range(len(list1)):

list2[index] = list1[index]+1
print(list1)
print(list2)

f2([1,2,3])

[1, 2, 3]
[2, 3, 4]

28

Trace The Code 3:

def f3(list1) :
list2 = list1*2
for index in range(len(list2)):

list2[index] += 1
print(list1)
print(list2)

f3([1,2,3])

[1, 2, 3]
[2, 3, 4, 2, 3, 4]

29

Trace The Code 4:

def f4(list1) :
list2 = [list1]*3
for index in range(len(list2)):

innerList = list2[index]
for innerIndex in range(len(innerList)) :

innerList[innerIndex] += 1
print(list1)
print(list2)

f4([1,2,3]) [4, 5, 6]
[[4, 5, 6], [4, 5, 6],[4, 5, 6]]

List 1

List 2

30

Trace The Code 5:
def f5(list1) :

list2 = [list1]*2
for index in range(len(list2)):

innerList = list2[index]
innerList = innerList[:]
for innerIndex in range(len(innerList)) :

innerList[innerIndex] += 1
list2[index] = innerList

print(list1)
print(list2)

f5([1,2,3]) [1, 2, 3]
[[2, 3, 4], [2, 3, 4]]

Onward to … sets and
tuples.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Structures: Lists: Complex
	Slicing
	Slicing a List
	Slicing a List
	Copy List
	Same List
	Passing List to Functions
	Duplicate a List
	Operations
	List Operations and Methods
	Search/Remove List
	Searching For Elements
	Removing Elements
	Removing Elements
	Removing Elements
	Sorting a List
	Sorting
	Sorting
	Sorting - Bubble Sort
	Sorting - Selection Sort
	Sorting in Python
	List Example
	Practice Example
	Practice Example Design
	Tracing
	Trace The Code 1:
	Trace The Code 2:
	Trace The Code 3:
	Trace The Code 4:
	Trace The Code 5:
	Onward to … sets and tuples.

