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Function calling review

Select a descriptive name for your function

Use brackets when calling functions even if you are not passing any arguments
At least one statement needs to be in a function.

Functions must be defined before they are called!
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How to use a function?

• Call function
• Pass valid inputs
• Store the result in a variable

If function returns a value:
returnedValue = functionName(values/variables) 

If no value is returned
functionName(values/variables) 
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Functions that do nothing

Functions have to have one line of code in them 
• Only way to make pythons syntax parsing that is looking for indentation happy
• (Once you put something indented in function the rest of indentation has to match)

• This is also true for conditionals and loop indentation
• Can use pass keyword to do nothing
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Functions return None by default

Functions in python always return something
• That something is by default nothing or None
• None is a special keyword
• (We often use None in other places in our code to show nothing has been stored in a 

variable yet)
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Return multiple things
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Functions can return multiple things
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Return values

• Format

• The results can be stored into variables for later use 

def <function name> (param1, param2, ...):    
body   
return var1, var2, ...

var1, var2, ... = <function name> (arg1, arg2, ...)
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Namespace
Must define functions before use
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Functions must be declared before use
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Examples
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Some simple functions
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Design
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There are challenges in defining a function
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User-Defined Functions - Commenting

• A good function always contains explicit comments that describe the purpose 
of the function, the parameters, and returned values.

• See: https://docs.python.org/3/library/functions.html

https://docs.python.org/3/library/functions.html
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Namespace
Re-defining functions
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Dangers of functions (re-use name)

• Python only lets you have one function per name, but you can override 
previous usage (ignores parameters unlike other languages)
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Parameter order
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Calling Functions - Order of Parameters

• Function parameters are position sensitive.
• When calling a function that accepts parameters, make sure your arguments 

are in the same order of the parameters.
• WARNING: Not following the order of the parameters will result in parameters 

having wrong values, which may lead to semantic and runtime errors.

def printbar(char, num = 10):
bar = ''
for i in range(num + 1):

bar = bar + char
print(bar)

printbar(20, '=')
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Keyword parameters

• Keyword parameters allow us to match arguments with parameters by name, 
instead of positions

def payroll (rate, hours):
bounus = 5
salary = rate * (hours + bounus)
return (salary)

payment = payroll (hours = 40, rate = 15)
print ("$%d has been paid." % (payment))

$675 has been paid.
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We can do this with functions you already use
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Scope



23

Scope of Variables

• Variables are memory locations that are used for the temporary storage of data
• The scope of a variable is the section of code in which it is accessible

var1 = …

def fee():
var2 = …

def foo():
var2 = …

Local scopes: 
Two different memory spaces, 
Accessible only within their 
functions

The global scope: 
Accessible by both functions
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Scope of Variables - Local Variables

• Local variables are only accessible to the function where they are defined. 
• The memory for local variables is only allocated (reserve the memory) when 

the function is running and deallocated (free up the memory) when the 
function reaches the end.

• Local variables are defined (memory allocated and value stored) each time the 
function is called.
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Scope of Variables - Local Variables

string “Hello World”

string

Function body is executed

Memory 
deallocated

Function is 
donestring is a local variable
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Scope of Variables - Global Variables

• Variables that are declared within the body of a function have a local scope
Accessible from inside the function only

• This includes the parameters

• Variables that are declared outside the body of a function have a global scope 
 Accessible from anywhere in the program

• In Python, global variables can only be modified in global scope.
• They cannot be modified in local scope unless the global keyword is used:

• global variableName
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Scope of Variables - Global Variables

I am Global

I am Global

Using Global Keyword
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Scope of Variables - Variable lifetime

• The lifetime of a variable is the time that a variable is allocated a memory 
space.

• The memory is allocated at the time of variable declaration

• Global variables exist until the program terminates
• Local variables exist until the function containing it finishes
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Memory
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Memory Organization

• The memory for a program is organized into three regions
• Text (Instructions)

• Dynamic Data (Heap)

• Stack
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Memory Organization

• The memory for a program is organized into three regions
• Text (Instructions): holds program instructions. Contrary to what the name suggests, code 

is in binary machine code (not human-readable). Generally read-only.

• Dynamic Data (Heap): objects allocated as the program runs

• Stack: information about function calls, including all pointers for local variables. Very 
common to have pointers from the stack into the heap (not common the other way 
around).
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Memory Organization

Stack

Free Memory

Dynamic Data 
(Heap)

Text 
(Instructions)

writable; not executable

writable; not executable

read-only; executable

Managed “automatically”
by compiler

Managed by programmer

Initialized when process starts
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Memory Organization

• Everything in Python is an object. Variables are labels that refer to these 
objects.

• All objects are stored in the heap.
• If the labels (variables) are created in local scope, then the label is stored in the 

stack memory. Otherwise, the label is stored in heap memory.

• Lets run through a simulation of Python’s memory organization to clarify these 
concepts. This simulation simplifies some aspects for clarity’s sake.
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Memory Organization - Walkthrough

Stack Memory Heap Memory
Instructions (code):

Define a global variable x by assigning the value 10 to it.
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Memory Organization - Walkthrough

x = 10 #global variable

10

Stack Memory Heap Memory
Instructions (code):

The value 10 is an object, so it is stored in heap. 
The variable is global, so it is stored in heap as well 

x
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Memory Organization - Walkthrough

x = 10 #global variable

10

Stack Memory Heap Memory
Instructions (code):

Define another variable y = 10

x
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Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

10

Stack Memory Heap Memory
Instructions (code):

Again, y is global and 10 is an object, so into the heap they go.
Notice that the object 10 is not recreated; to preserve memory space.

x

y
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Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

10

Stack Memory Heap Memory
Instructions (code):

Increment y by 1.

x

y
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Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

y += 1 #increment by 1

10

Stack Memory Heap Memory
Instructions (code):

A new object, 11, is created and y refers (points) to it.

x

y

11



40

Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

y += 1 #increment by 1

10

Stack Memory Heap Memory
Instructions (code):

Define a function, increment, that accepts one argument, a, add one to it and store it in variable z then return z.

x

y

11
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Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

y += 1 #increment by 1

def increment(a):

z = a + 1

return z
10

Stack Memory Heap Memory
Instructions (code):

The function code is stored in the Text memory. The reference to the function is global so it is stored in the heap.
*This is over simplified for this class’s purposes.

x

y

11

func:increment
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Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

y += 1 #increment by 1

def increment(a):

z = a + 1

return z
10

Stack Memory Heap Memory
Instructions (code):

Call increment and pass y to it.

x

y

11

func:increment
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Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

y += 1 #increment by 1

def increment(a):

z = a + 1

return z

z = increment(y)

10

Stack Memory Heap Memory
Instructions (code):

The function call gets stored in the stack along with all the local variables.
The parameter a points to the 11 object in the heap. A new object 12 is created and z points to it.

x

y

11

a
z

increment

func:increment

12
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Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

y += 1 #increment by 1

def increment(a):

z = a + 1

return z

z = increment(y)

10

Stack Memory Heap Memory
Instructions (code):

When the function execution ends, it gets popped out of the stack; its local variables’ reference are deallocated.
Its returned value is stored in the caller’s scope (global)

x

y

11

a
z

increment

func:increment

12
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Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

y += 1 #increment by 1

def increment(a):

z = a + 1

return z

z = increment(y)

10

Stack Memory Heap Memory
Instructions (code):

When the function execution ends, it gets popped out of the stack; its local variables’ reference are deallocated.
Its returned value is stored in the caller’s scope (global)

x

y

11

z

func:increment

12



46

Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

y += 1 #increment by 1

def increment(a):

z = a + 1

return z

z = increment(y)

10

Stack Memory Heap Memory
Instructions (code):

Delete the variables y, and z

x

y

11

z

func:increment

12
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Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

y += 1 #increment by 1

def increment(a):

z = a + 1

return z

z = increment(y)

del y

del z

10

Stack Memory Heap Memory
Instructions (code):

The reference is removed. Objects remain in memory. 

x

11

func:increment

12
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Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

y += 1 #increment by 1

def increment(a):

z = a + 1

return z

z = increment(y)

del y

del z

10

Stack Memory Heap Memory
Instructions (code):

If no more references to the object exist, then garbage collection will remove it from memory and free up the 
space. 

x

11

func:increment

12
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Memory Organization - Walkthrough

Stack Memory Heap Memory
Instructions (code):

Starting fresh…
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Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

Stack Memory Heap Memory
Instructions (code):

Consider the increment function and the new function, decrement, which calls it, decrement its output, and 
return the new value.

func:increment

func:decrement
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Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

Stack Memory Heap Memory
Instructions (code):

Create a global variable x = 10.

func:increment

func:decrement
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Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

Stack Memory Heap Memory
Instructions (code):

Call decrement, pass x to it, and store the result in y.

func:increment

func:decrement

x 10
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Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

Lets trace the execution starting the decrement function call…

func:increment

func:decrement

x 10
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Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

Lets trace the execution starting the decrement function call…

func:increment

func:decrement

x 10

<expr>
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Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

When decrement is called, its call is pushed into the stack.
Its parameter is created and points to the object 10.

func:increment

func:decrement

x 10

b

decrement

<expr>
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Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

The next line is called. It is evaluated as follows: increment(b), then – 1, then assignment to c. 

func:increment

func:decrement

x 10

b

decrement

<expr>
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Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

The next line is called. It is evaluated as follows: increment(b), then – 1, then assignment to c. 

func:increment

func:decrement

x 10

b
<exp>

decrement

<expr>
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Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

Increment is called and its parameter a points to 10, as well.

func:increment

func:decrement

x 10

b
<exp>

decrement

a

increment

<expr>
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Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

The return call does two things: 1) increments a, and 2) return the reference to the caller.

func:increment

func:decrement

x 10

b
<exp>

decrement

a

increment

<expr>
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Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

The return call does two things: 1) increments a, and 2) return the reference to the caller.

func:increment

func:decrement

x 10

b
<exp>

decrement

a
<exp>

increment 11

<expr>
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Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

The return call does two things: 1) increments a, and 2) return the reference to the caller, which ends the 
increment’s execution.

func:increment

func:decrement

x 10

b
<exp>

decrement

a
<exp>

increment 11

Return a reference 
of 11 to caller

<expr>
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Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

Execution is back to the calling function.
The returned value remains in heap and its reference is returned to the expression.

func:increment

func:decrement

x 10

b
<exp>

decrement

11

<expr>
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Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

The rest of the expression is evaluated. c points to back to 10.
The object 11 has no references, so eventually the garbage collection algorithm will remove it from memory.

func:increment

func:decrement

x 10

b
c

decrement

11

<expr>
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Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

c is returned to the caller, which terminates the execution of decrement. Local variables are deleted.

func:increment

func:decrement

x 10

b
c

decrement

<expr>
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Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

The expression is evaluated and the results are stored in y

func:increment

func:decrement

x 10

<expr>
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Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

func:increment

func:decrement

x 10

y
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Program Structure – Functions
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Structure

def main():
func1()
func2()
…

…

main()

def func1():

def func2():

def func3():

The main function

The only code outside functions
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Function Tracing
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Scope

1  2  10
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Scope

1
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Trace the code

1
2
3
4
3



Onward to … lists, 
dictionaries, and strings.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/
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