
Functions: Usage
CPSC 217: Introduction to Computer Science for Multidisciplinary
Studies I
Winter 2023

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

January 9, 2023

Copyright © 2023

2

Function calling review

Select a descriptive name for your function

Use brackets when calling functions even if you are not passing any arguments
At least one statement needs to be in a function.

Functions must be defined before they are called!

3

How to use a function?

• Call function
• Pass valid inputs
• Store the result in a variable

If function returns a value:
returnedValue = functionName(values/variables)

If no value is returned
functionName(values/variables)

4

Functions that do nothing

Functions have to have one line of code in them
• Only way to make pythons syntax parsing that is looking for indentation happy
• (Once you put something indented in function the rest of indentation has to match)

• This is also true for conditionals and loop indentation
• Can use pass keyword to do nothing

5

Functions return None by default

Functions in python always return something
• That something is by default nothing or None
• None is a special keyword
• (We often use None in other places in our code to show nothing has been stored in a

variable yet)

6

Return multiple things

7

Functions can return multiple things

8

Return values

• Format

• The results can be stored into variables for later use

def <function name> (param1, param2, ...):
body
return var1, var2, ...

var1, var2, ... = <function name> (arg1, arg2, ...)

9

Namespace
Must define functions before use

10

Functions must be declared before use

11

Examples

12

Some simple functions

13

Design

14

There are challenges in defining a function

15

User-Defined Functions - Commenting

• A good function always contains explicit comments that describe the purpose
of the function, the parameters, and returned values.

• See: https://docs.python.org/3/library/functions.html

https://docs.python.org/3/library/functions.html

16

Namespace
Re-defining functions

17

Dangers of functions (re-use name)

• Python only lets you have one function per name, but you can override
previous usage (ignores parameters unlike other languages)

18

Parameter order

19

Calling Functions - Order of Parameters

• Function parameters are position sensitive.
• When calling a function that accepts parameters, make sure your arguments

are in the same order of the parameters.
• WARNING: Not following the order of the parameters will result in parameters

having wrong values, which may lead to semantic and runtime errors.

def printbar(char, num = 10):
bar = ''
for i in range(num + 1):

bar = bar + char
print(bar)

printbar(20, '=')

20

Keyword parameters

• Keyword parameters allow us to match arguments with parameters by name,
instead of positions

def payroll (rate, hours):
bounus = 5
salary = rate * (hours + bounus)
return (salary)

payment = payroll (hours = 40, rate = 15)
print ("$%d has been paid." % (payment))

$675 has been paid.

21

We can do this with functions you already use

22

Scope

23

Scope of Variables

• Variables are memory locations that are used for the temporary storage of data
• The scope of a variable is the section of code in which it is accessible

var1 = …

def fee():
var2 = …

def foo():
var2 = …

Local scopes:
Two different memory spaces,
Accessible only within their
functions

The global scope:
Accessible by both functions

24

Scope of Variables - Local Variables

• Local variables are only accessible to the function where they are defined.
• The memory for local variables is only allocated (reserve the memory) when

the function is running and deallocated (free up the memory) when the
function reaches the end.

• Local variables are defined (memory allocated and value stored) each time the
function is called.

25

Scope of Variables - Local Variables

string “Hello World”

string

Function body is executed

Memory
deallocated

Function is
donestring is a local variable

26

Scope of Variables - Global Variables

• Variables that are declared within the body of a function have a local scope
Accessible from inside the function only

• This includes the parameters

• Variables that are declared outside the body of a function have a global scope
 Accessible from anywhere in the program

• In Python, global variables can only be modified in global scope.
• They cannot be modified in local scope unless the global keyword is used:

• global variableName

27

Scope of Variables - Global Variables

I am Global

I am Global

Using Global Keyword

28

Scope of Variables - Variable lifetime

• The lifetime of a variable is the time that a variable is allocated a memory
space.

• The memory is allocated at the time of variable declaration

• Global variables exist until the program terminates
• Local variables exist until the function containing it finishes

29

Memory

30

Memory Organization

• The memory for a program is organized into three regions
• Text (Instructions)

• Dynamic Data (Heap)

• Stack

31

Memory Organization

• The memory for a program is organized into three regions
• Text (Instructions): holds program instructions. Contrary to what the name suggests, code

is in binary machine code (not human-readable). Generally read-only.

• Dynamic Data (Heap): objects allocated as the program runs

• Stack: information about function calls, including all pointers for local variables. Very
common to have pointers from the stack into the heap (not common the other way
around).

32

Memory Organization

Stack

Free Memory

Dynamic Data
(Heap)

Text
(Instructions)

writable; not executable

writable; not executable

read-only; executable

Managed “automatically”
by compiler

Managed by programmer

Initialized when process starts

33

Memory Organization

• Everything in Python is an object. Variables are labels that refer to these
objects.

• All objects are stored in the heap.
• If the labels (variables) are created in local scope, then the label is stored in the

stack memory. Otherwise, the label is stored in heap memory.

• Lets run through a simulation of Python’s memory organization to clarify these
concepts. This simulation simplifies some aspects for clarity’s sake.

34

Memory Organization - Walkthrough

Stack Memory Heap Memory
Instructions (code):

Define a global variable x by assigning the value 10 to it.

35

Memory Organization - Walkthrough

x = 10 #global variable

10

Stack Memory Heap Memory
Instructions (code):

The value 10 is an object, so it is stored in heap.
The variable is global, so it is stored in heap as well

x

36

Memory Organization - Walkthrough

x = 10 #global variable

10

Stack Memory Heap Memory
Instructions (code):

Define another variable y = 10

x

37

Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

10

Stack Memory Heap Memory
Instructions (code):

Again, y is global and 10 is an object, so into the heap they go.
Notice that the object 10 is not recreated; to preserve memory space.

x

y

38

Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

10

Stack Memory Heap Memory
Instructions (code):

Increment y by 1.

x

y

39

Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

y += 1 #increment by 1

10

Stack Memory Heap Memory
Instructions (code):

A new object, 11, is created and y refers (points) to it.

x

y

11

40

Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

y += 1 #increment by 1

10

Stack Memory Heap Memory
Instructions (code):

Define a function, increment, that accepts one argument, a, add one to it and store it in variable z then return z.

x

y

11

41

Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

y += 1 #increment by 1

def increment(a):

z = a + 1

return z
10

Stack Memory Heap Memory
Instructions (code):

The function code is stored in the Text memory. The reference to the function is global so it is stored in the heap.
*This is over simplified for this class’s purposes.

x

y

11

func:increment

42

Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

y += 1 #increment by 1

def increment(a):

z = a + 1

return z
10

Stack Memory Heap Memory
Instructions (code):

Call increment and pass y to it.

x

y

11

func:increment

43

Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

y += 1 #increment by 1

def increment(a):

z = a + 1

return z

z = increment(y)

10

Stack Memory Heap Memory
Instructions (code):

The function call gets stored in the stack along with all the local variables.
The parameter a points to the 11 object in the heap. A new object 12 is created and z points to it.

x

y

11

a
z

increment

func:increment

12

44

Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

y += 1 #increment by 1

def increment(a):

z = a + 1

return z

z = increment(y)

10

Stack Memory Heap Memory
Instructions (code):

When the function execution ends, it gets popped out of the stack; its local variables’ reference are deallocated.
Its returned value is stored in the caller’s scope (global)

x

y

11

a
z

increment

func:increment

12

45

Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

y += 1 #increment by 1

def increment(a):

z = a + 1

return z

z = increment(y)

10

Stack Memory Heap Memory
Instructions (code):

When the function execution ends, it gets popped out of the stack; its local variables’ reference are deallocated.
Its returned value is stored in the caller’s scope (global)

x

y

11

z

func:increment

12

46

Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

y += 1 #increment by 1

def increment(a):

z = a + 1

return z

z = increment(y)

10

Stack Memory Heap Memory
Instructions (code):

Delete the variables y, and z

x

y

11

z

func:increment

12

47

Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

y += 1 #increment by 1

def increment(a):

z = a + 1

return z

z = increment(y)

del y

del z

10

Stack Memory Heap Memory
Instructions (code):

The reference is removed. Objects remain in memory.

x

11

func:increment

12

48

Memory Organization - Walkthrough

x = 10 #global variable

y = 10 #global variable

y += 1 #increment by 1

def increment(a):

z = a + 1

return z

z = increment(y)

del y

del z

10

Stack Memory Heap Memory
Instructions (code):

If no more references to the object exist, then garbage collection will remove it from memory and free up the
space.

x

11

func:increment

12

49

Memory Organization - Walkthrough

Stack Memory Heap Memory
Instructions (code):

Starting fresh…

50

Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

Stack Memory Heap Memory
Instructions (code):

Consider the increment function and the new function, decrement, which calls it, decrement its output, and
return the new value.

func:increment

func:decrement

51

Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

Stack Memory Heap Memory
Instructions (code):

Create a global variable x = 10.

func:increment

func:decrement

52

Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

Stack Memory Heap Memory
Instructions (code):

Call decrement, pass x to it, and store the result in y.

func:increment

func:decrement

x 10

53

Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

Lets trace the execution starting the decrement function call…

func:increment

func:decrement

x 10

54

Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

Lets trace the execution starting the decrement function call…

func:increment

func:decrement

x 10

<expr>

55

Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

When decrement is called, its call is pushed into the stack.
Its parameter is created and points to the object 10.

func:increment

func:decrement

x 10

b

decrement

<expr>

56

Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

The next line is called. It is evaluated as follows: increment(b), then – 1, then assignment to c.

func:increment

func:decrement

x 10

b

decrement

<expr>

57

Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

The next line is called. It is evaluated as follows: increment(b), then – 1, then assignment to c.

func:increment

func:decrement

x 10

b
<exp>

decrement

<expr>

58

Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

Increment is called and its parameter a points to 10, as well.

func:increment

func:decrement

x 10

b
<exp>

decrement

a

increment

<expr>

59

Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

The return call does two things: 1) increments a, and 2) return the reference to the caller.

func:increment

func:decrement

x 10

b
<exp>

decrement

a

increment

<expr>

60

Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

The return call does two things: 1) increments a, and 2) return the reference to the caller.

func:increment

func:decrement

x 10

b
<exp>

decrement

a
<exp>

increment 11

<expr>

61

Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

The return call does two things: 1) increments a, and 2) return the reference to the caller, which ends the
increment’s execution.

func:increment

func:decrement

x 10

b
<exp>

decrement

a
<exp>

increment 11

Return a reference
of 11 to caller

<expr>

62

Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

Execution is back to the calling function.
The returned value remains in heap and its reference is returned to the expression.

func:increment

func:decrement

x 10

b
<exp>

decrement

11

<expr>

63

Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

The rest of the expression is evaluated. c points to back to 10.
The object 11 has no references, so eventually the garbage collection algorithm will remove it from memory.

func:increment

func:decrement

x 10

b
c

decrement

11

<expr>

64

Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

c is returned to the caller, which terminates the execution of decrement. Local variables are deleted.

func:increment

func:decrement

x 10

b
c

decrement

<expr>

65

Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

The expression is evaluated and the results are stored in y

func:increment

func:decrement

x 10

<expr>

66

Memory Organization - Walkthrough

def increment(a):

return a + 1

def decrement(b):

c = increment(b) - 1

return c

x = 10

y = decrement(x)

Stack Memory Heap Memory
Instructions (code):

func:increment

func:decrement

x 10

y

67

Program Structure – Functions

68

Structure

def main():
func1()
func2()
…

…

main()

def func1():

def func2():

def func3():

The main function

The only code outside functions

69

Function Tracing

70

Scope

1 2 10

71

Scope

1

72

Trace the code

1
2
3
4
3

Onward to … lists,
dictionaries, and strings.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Functions: Usage
	Function calling review
	How to use a function?
	Functions that do nothing
	Functions return None by default
	Return multiple things
	Functions can return multiple things
	Return values
	Namespace
	Functions must be declared before use
	Examples
	Some simple functions
	Design
	There are challenges in defining a function
	User-Defined Functions - Commenting
	Namespace
	Dangers of functions (re-use name)
	Parameter order
	Calling Functions - Order of Parameters
	Keyword parameters
	We can do this with functions you already use
	Scope
	Scope of Variables
	Scope of Variables - Local Variables
	Scope of Variables - Local Variables
	Scope of Variables - Global Variables
	Scope of Variables - Global Variables
	Scope of Variables - Variable lifetime
	Memory
	Memory Organization
	Memory Organization
	Memory Organization
	Memory Organization
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Memory Organization - Walkthrough
	Program Structure – Functions
	Structure
	Function Tracing
	Scope
	Scope
	Trace the code
	Onward to … lists, dictionaries, and strings.

