Decisions: Boolean Logic

CPSC 217: Introduction to Computer Science for Multidisciplinary Studies I
 Winter 2023

Jonathan Hudson, Ph.D.

Instructor
Department of Computer Science
University of Calgary
January 9, 2023
Copyright © 2023

Review

- What kinds of statements have we seen so far?
- Assignment statements
- Input statements
- Output statements
- These are generally necessary, but not sufficient, to solve "interesting" problems

Decision making

- Decisions are questions with answers that are either true or false (Boolean)
- e.g., Is it true that the variable 'num' is positive?
- A program can branch one way or another depending upon the answer to the question (the result of the Boolean expression).
$\mathbf{x}=$ True
$y=$ False

Relational Operators

Relational operators

- Allow us to compare other data types to produce booleans

Operator	Meaning	Math. Equivalent	Example
$<$	$<$	Less than	$3<5$
$>$	$>$	Greater than	$5>3$
$==$	$=$	Equal to	$3==3$
$<=$	\leq	Less than or equal to	$5<=5$
$>=$	\geq	Greater than or equal to	$5>=4$
$!=$	\neq	Not equal to	$5!=3$

Boolean expression

(operand) relational operator (operand)

- The result of the relational operator (comparison) is of type bool (short for boolean)
- Boolean: a binary variable, having two possible values: "True" and "False"
- True $\rightarrow 1$ or T and False $\rightarrow 0$ or F

$$
\begin{aligned}
& x=1.0 \\
& y=2.0 \\
& c=(x<=y) \\
& \text { print (type(c) }) \longrightarrow \text { class 'bool'> }
\end{aligned}
$$

Boolean Operators

Logical (Boolean) operators

- For bool variables \mathbf{a} and \mathbf{b}
- \mathbf{a} and b (True only when \mathbf{a} and \mathbf{b} are both True)
- \mathbf{a} or \mathbf{b} (False only when \mathbf{a} and \mathbf{b} are both False)
- not a (True only when a is False and vice versa)

Precendence

With relational and boolean operators

Update on precedence

Order	Operations	Precedence	
1	()		Highest
2	$x^{* *} y$		
3	$-x, \quad+x$		
4	$x^{*} y, \quad x / y, \quad x \% y, \quad x / / y$		
5	$x+y, \quad x-y \quad$		
6	$<, \quad<=, \quad>$		
7	$!=, \quad==$		
8	not		
9	and		
10	or		
11	$=$		Lowest

Truth Tables

Truth Table for OR

Truth Table for OR

A	B	A or B
T	T	T

Truth Table for OR

A	B	A or B
T	T	T
T	F	T

Truth Table for OR

A	B	A or B
T	T	T
T	F	T
F	T	T

Truth Table for OR

A	B	A or B
T	T	T
T	F	T
F	T	T
F	F	F

Logical expression

(boolean expression) logical operator (boolean expression)

- Logical operators \rightarrow and, or, and not (more later)

A	B	A or B
T	T	T
T	F	T
F	T	T
F	F	F

A	B	A and B
T	T	T
T	F	F
F	T	F
F	F	F

B	not B
T	F
F	T

Truth Tables

Example

Boolean Logic

- Example:
- Construct a truth table for A and (B or not C):

Boolean Logic

- Example:
- Construct a truth table for A and (B or not C):

A	B	C
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Boolean Logic

- Example:
- Construct a truth table for A and (B or not C):

A	B	C	not \mathbf{C}
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Boolean Logic

- Example:
- Construct a truth table for A and (B or not C):

A	B	C	not C	B or not C
0	0	0	1	1
0	0	1	0	0
0	1	0	1	1
0	1	1	0	1
1	0	0	1	1
1	0	1	0	0
1	1	0	1	1
1	1	1	0	1

Boolean Logic

- Example:
- Construct a truth table for A and (B or not C)

A	B	C	not C	B or not C	A and (B or not C)
0	0	0	1	1	0
0	0	1	0	0	0
0	1	0	1	1	0
0	1	1	0	1	0
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	0	1	1

Onward to ... if else statements.

