Decisions: Boolean Logic

CPSC 217: Introduction to Computer Science for Multidisciplinary Studies I Winter 2023

Jonathan Hudson, Ph.D. Instructor Department of Computer Science University of Calgary

January 9, 2023

Copyright © 2023

Review

• What kinds of statements have we seen so far?

- Assignment statements
- Input statements
- Output statements
- These are generally necessary, but not sufficient, to solve "interesting" problems

Decision making

- Decisions are questions with answers that are either true or false (Boolean)
 - e.g., Is it true that the variable 'num' is positive?
- A program can *branch* one way or another depending upon the answer to the question (the result of the Boolean expression).
- $\mathbf{x} = \mathbf{True}$
- y = False

Relational Operators

Relational operators

• Allow us to compare other data types to produce booleans

Operator	Meaning	Math. Equivalent Example	
<	<	Less than	3 < 5
>	>	Greater than	5 > 3
==	=	Equal to	3 == 3
<=	≤	Less than or equal to	5 <= 5
>=	≥	Greater than or equal to	5 >= 4
!=	¥	Not equal to	5!= 3

Boolean expression

(operand) *relational operator* (operand)

- The result of the relational operator (comparison) is of type **bool** (short for boolean)
- *Boolean*: a binary variable, having two possible values: "True" and "False"
- True \rightarrow 1 or T and False \rightarrow 0 or F

Boolean Operators

Logical (Boolean) operators

For bool variables a and b

- a and b (True only when a and b are both True)
- a or b (False only when a and b are both False)
- not a (True only when a is False and vice versa)

Precendence

With relational and boolean operators

Update on precedence

Order	Operations	Precedence
1	()	Highest
2	x ** y	
3	-x, +x	
4	x * y, x / y, x % y, x // y	
5	x + y, x - y	
6	<, <=, >, >=	
7	!=, ==	
8	not	
9	and	
10	or	
11	=	Lowest

Truth Tables

А	В	A or B

Α	В	A or B
т	т	т

Α	В	A or B
Т	т	т
т	F	т

Α	В	A or B
Т	т	т
Т	F	т
F	т	т

Α	В	A or B
Т	т	Т
Т	F	Т
F	Т	Т
F	F	F

Logical expression

(boolean expression) **logical operator** (boolean expression)

• Logical operators \rightarrow and, or, and not (more later)

Α	В	A or B
Т	т	Т
Т	F	Т
F	Т	Т
F	F	F

А	В	A and B
Т	т	Т
Т	F	F
F	Т	F
F	F	F

В	not B
т	F
F	Т

Truth Tables

Example

- Example:
 - Construct a truth table for A and (B or not C):

- Example:
 - Construct a truth table for **A and (B or not C)**:

Α	В	С
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

- Example:
 - Construct a truth table for **A and (B or not C)**:

Α	В	С	not C
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

- Example:
 - Construct a truth table for **A and (B or not C)**:

Α	В	С	not C	B or not C
0	0	0	1	1
0	0	1	0	0
0	1	0	1	1
0	1	1	0	1
1	0	0	1	1
1	0	1	0	0
1	1	0	1	1
1	1	1	0	1

- Example:
 - Construct a truth table for A and (B or not C)

A B C	not C	B or not C	A and (B or not C)
0 0 0	1	1	0
0 0 1	0	0	0
<mark>0</mark> 1 0	1	1	0
0 1 1	0	1	0
1 0 0	1	1	1
1 0 1	0	0	0
1 1 0	1	1	1
<mark>1</mark> 1 1	0	1	1

Onward to ... if else statements.

Jonathan Hudson jwhudson@ucalgary.ca https://pages.cpsc.ucalgary.ca/~jwhudson/

