
System: Exceptions
CPSC 217: Introduction to Computer Science for Multidisciplinary
Studies I
Jul 2021 - CBE

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Wednesday, June 2, 2021

Copyright © 2021

2

Revisiting Errors

• Previously, you learned about the three main types of errors:
1. Syntax Errors: refers to errors in the structure of a program and the rules about that

structure.
2. Semantic/Logic Errors: refers to errors in the logic of a program
3. Runtime Errors: refers to errors that occur during program execution

• Runtime Errors are also referred to as Exceptions

3

Exceptions

• An exception is an event that occurs during the execution of a program, which
disrupts its execution.

• Exceptions can rise due to many reasons, including improper use of functions
or operators, user input, logic errors, hardware and OS limitations, etc.

• Examples:
• trying to access a list with an invalid index
• trying to open a non-existent file
• trying to parse a string using an invalid character
• trying to converting a string to an integer
• ...

4

Exceptions - Exception Handing

• Exceptions can be handled is several ways:
• Using conditionals: the code handles scenarios where errors may occur.
• Using try/except blocks: placing code that may fail within a try/except block.

5

Try/Except

6

Exceptions – Try/Except Block

try:

<code segment that may cause error>

except:

<action to take when an exception occurs>

Always executed, but may raise exception(s).

executed only if exception(s) occur

catch any exception that may occur within
the try block.

7

Exceptions - Exception Handing

• Example: open a file.

try:
fileHandler = open("file does not exit")

except:
print("Oops! Something went wrong.")

from os import path

if path.exists("no file"):
print("File exists")

else:
fileHandler = open("file does not exit")
print(“File does not exist")

8

Exceptions - Exception Handing

• It is good coding practice to catch potential errors using conditionals instead of
try/except blocks.

• However, in some cases, you must try/except.

• Consider the open file example again. What happens if the file exists, but by
the time the open() function is called, the file no longer exists or another
process had locked it?

9

Exceptions - Exception Handing

• The following code will crash if: the file exists, but was removed, renamed,
locked, etc. at the input() function call.

• Try/except will handle the situation

from os import path

filePath = "C:/…/inputFile.txt"

if path.exists(filePath): #File exists
print("File exists")
userInput = input("How U doin?") #file deleted
fileHandler = open("file does not exit") #exception

10

Exceptions - Exception Handing

• When to use if statements vs. try/except?
• Use if statements to catch any as many potential errors as possible. However, as you have

seen, not all situations can be captured (easily or at all) by if statements.
• For such situations, use the try/except block.

11

Naming Exceptions

12

Exceptions – Try/Except Block - Catching Specific Exception

try:

<code segment that may cause error>

except <exception type>:

<action to take when an exception occurs>

catch any exception that may occur within
the try block.

13

Exceptions – Catching Several Specific Exceptions

• Every exception raised in Python code is of a specific type.
• Example:

• Division by zero is an instance of ZeroDivisionError: print(10/0)
• Passing correct data type to a function, but with the wrong value is an instance of

ValueError: int(“Hello”)

• For a list of all built-in exception types see:
https://docs.python.org/3/library/exceptions.html

https://docs.python.org/3/library/exceptions.html

14

Try/Except/Except

15

Exceptions – Catching Several Specific Exceptions

try:

<code segment that may cause error>

except (<type>, <type>, ...) as <obj name>:

<action to take when an exception occurs>

except (<type>, <type>, ...) as <obj name>:

<action to take when an exception occurs>

• It is a good coding practice to have one except for each exception type.

16

Exceptions – Catching Several Specific Exceptions

• Example:

try:
userInput = input(">Enter an int >0: ")
value = int(userInput) #<-potential ValueError
print(1/value) #<-potential ZeroDivisionError

except ValueError as value_error:
print("ValueError: %s is not an int.“ % userInput)

except ZeroDivisionError as div_by_zero_except:
print("ZeroDivisionError - Cannot divide by Zero")

except:
print("Something else went wrong!")

17

Try/Except/Else

18

Exceptions – Try/Except Block - else and finally Causes

• else is an optional clause that may appear after all the except clauses.
• Code within the else clause is executed only if the code under the try clause did not raise

an exception.
• It is useful in situations where you don’t want some code to be protected by the try clause

and you want the code to execute only when the code protected by try did not raise an
exception.

try:
userInput = input(">Enter an int >0: ")
value = int(userInput)#<- potential ValueError
print("End of Try clause.")

except ValueError as value_error:
print(value_error)

else:
print("In else clause: No exception occurred")

>Enter an int >0: 10
End of Try clause.
In else clause:…

19

Try/Except/Finally

20

Exceptions – Try/Except Block - else and finally Causes

• finally is also an optional clause that may appear after all the except clauses
and the else clause (if it was present).

• Code within the finally clause always executes even if an exception is raised.
• Code within the try clause stops executing at the line where an exception arise. So, it is

important to place any code that must execute in finally.
• Also, if an exception is risen and the except clause ends with a return, the finally clause will

execute before the return statement.
• A consequence of this is that: if finally ends with a return, then the return in the except clause

will be ignored.

21

Exceptions – Try/Except Block - else and finally Causes

def foo():
try:

userInput = input(">Enter an int >0: ")
value = int(userInput)#<- potential ValueError
return value

except ValueError as value_error:
print(value_error)
return None

finally:
print("In finally clause.")
#return -1

print('foo() returned: %s’ % foo())

>Enter an int >0: 1
In finally clause.
foo() returned: 1

>Enter an int >0: a
invalid literal…
In finally clause.
foo() returned: None

22

Exceptions – Try/Except Block - else and finally Causes

def foo():
try:

userInput = input(">Enter an int >0: ")
value = int(userInput)#<- potential ValueError
return value

except ValueError as value_error:
print(value_error)
return None

finally:
print("In finally clause.")
#return -1

print('foo() returned: %s’ % foo())

>Enter an int >0: 1
In finally clause.
foo() returned: -1

>Enter an int >0: a
invalid literal…
In finally clause.
foo() returned: -1

If this line is uncommented, then the return statements under
except and try will not execute.

23

Try/Except Summary

24

Exceptions – Try/Except Block – Putting It All Together

try:

<code segment that may cause error>

except (<type>, <type>, ...) as <obj name>:

<action to take when an exception occurs>

else:

<action to take when no exception occurs>

finally:

<action to take in any case>

optional: can target certain types of exceptions

optional: a named exception object
for accessing info on exception

optional: executed only if no exceptions

optional: executed regardless of the code outcome

25

exit()

26

Error Handling - exit() Function

• exit(errCode) is a Python built-in function that, when called, raises a SystemExit
exception and exists Python.

• This function is useful when you need to stop a program’s execution and indicate that an
error (of a certain code) occurred.

• Other python programs, and functions can catch this exception and retrieve the error code
to make decisions.

• Non-python programs that execute your code can also receive the exit code.
• Useful to communicate across programs that an error occurred.
• You can define your own errCodes:

• Some systems have a convention for assigning specific meanings to specific exit codes; Unix
programs generally use 2 for command line syntax errors and 1 for all other errors.

• Read more about it: https://docs.python.org/3/library/sys.html#sys.exit

https://docs.python.org/3/library/sys.html#sys.exit

27

Error Handling - exit() Function

import sys

def div(a, b):
if not isinstance(a, int) or not isinstance(b, int):

sys.exit(-123)
if b == 0:

sys.exit(123)
return a/b

28

Examples

29

Raising an Exception

import sys
def repeatStar(number):

if not isinstance(number, int):
raise Exception(‘%s not an int’ % number)

if number == 0:
raise ValueError('parameter number is zero')

return number*"*"

try:
repeatStar(1.5)
#repeatStar(0)

except (ValueError, Exception) as detail:
print(detail)

1.5 is not an int

Parameter number is zero

Raise generic exception
Raise ValueError

30

Invalid Index

• Accessing a list with an invalid index

Slide 30

try:
filename = sys.argv[1]

except IndexError:
print('Usage: ... ')
sys.exit(1)

If no argument is passed, then IndexError will be
raised.

31

Can’t open file

• Trying to open an non-existent file

Slide 31

import sys
try:

inputFile = open(sys.argv[1], 'r')
except (IOError, IndexError) as detail:

print (detail)
sys.exit(detail)

The variable detail will be assigned to which ever exception is raised first.

exit() accepts any data type

32

def reverseLines(inFilename, outFilename):
try:

inFile = open(inFilename,'r')
outFile = open(outFilename, 'w')
for line in inFile:

line = line.rstrip()
outFile.write(line[::-1] + "\n")

except IOError :
print("Encountered problem")

finally:
inFile.close()
outFile.close()

reverseLines("names.txt","ReverseNames.txt")

Error Handling - Examples

Slide 32

a:b:c counts in
increments of c from
a to b or from b to c
depending on the
sign of c (negative vs.
positive).

Onward to … Recursion.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~hudsonj/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	System: Exceptions
	Revisiting Errors
	Exceptions
	Exceptions - Exception Handing
	Try/Except
	Exceptions – Try/Except Block
	Exceptions - Exception Handing
	Exceptions - Exception Handing
	Exceptions - Exception Handing
	Exceptions - Exception Handing
	Naming Exceptions
	Exceptions – Try/Except Block - Catching Specific Exception
	Exceptions – Catching Several Specific Exceptions
	Try/Except/Except
	Exceptions – Catching Several Specific Exceptions
	Exceptions – Catching Several Specific Exceptions
	Try/Except/Else
	Exceptions – Try/Except Block - else and finally Causes
	Try/Except/Finally
	Exceptions – Try/Except Block - else and finally Causes
	Exceptions – Try/Except Block - else and finally Causes
	Exceptions – Try/Except Block - else and finally Causes
	Try/Except Summary
	Exceptions – Try/Except Block – Putting It All Together
	exit()
	Error Handling - exit() Function
	Error Handling - exit() Function
	Examples
	Raising an Exception
	Invalid Index
	Can’t open file
	Error Handling - Examples
	Onward to … Recursion.

