
System: Files
CPSC 217: Introduction to Computer Science for Multidisciplinary
Studies I
Jul 2021 - CBE

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Wednesday, June 2, 2021

Copyright © 2021

2

Files

• User input comes in various ways:
• Hard-code: x = 10
• User keyboard input: info = input(“Please enter the
info”)

• Command-line arguments: >python programName arg1 ...
• File Input

• An input may be a path to a file (or to a directory where the file is located) that
your program can process by:

• Opening the file, reading from the file, overwriting or appending to the file,
and closing the file.

3

Files

• There are two main file types:
1. Text files

• Encoded using ASCII or Unicode
• Can be viewed with editors such as Emacs and Notepad
• Examples: Python source files, web pages, …

2. Binary files
• Contain arbitrary sequences of bits which do not conform to ASCII or

Unicode characters
• Examples: Most images, word processor files, …

4

Paths

5

Files - File Path

• For a program to be able to access a file, you must tell it exactly where to find it
by providing the path to the file.

• Example:

• Examples of Absolute Paths:
• Windows: C:/users/Zaamout/Desktop/inputFile.csv
• Mac: /users/Hudson/Desktop/inputFile.csv
• Linux (CPSC machines): /home/grads/kzaamout/inputFile.csv

C:\Users\kzaamout\Desktop>python test.py C:\Users\kzaamout\Desktop\input.csv

Command-line:

This is an Absolute Path, a path that starts from the root
directory of your machine to a target file or directory.

6

Files - Check if File Exists?

• You can check if a given file exists in Python using path.exist() function from the
os library:

• The function returns a boolean.

• Notice that the files above did not have an absolute path. Why?

import os
import sys

print("exist?", os.path.exists(sys.argv[1]))

C:\...\Desktop>python test.py test.py
exists? True

C:\...\Desktop>python test.py NOPE.txt
exists? False

Command-line: test.py

7

Files - File Path

• If the input file resides in the same location from where you executed a
module, you can omit the path and only provide the input file name.

• Python searches for the file in the current working directory (this is where you
executed the file.

import os
import sys

print("exist?", os.path.exists(sys.argv[1]))

C:\...\Desktop>python test.py test.py
exists? True

C:\...\kzaamout>python test.py test.py
exists? False

Command-line: test.py

test.py is under Desktop directory, not kzaamout
HOW CAN YOU FIX THIS?

8

Open a File

9

import sys
if len(sys.argv) != 2:

print('missing file path‘)
else:

filename = sys.argv[1]
inputFileHandler = open(filename, "r")

Files - Opening a File

• Call Python’s built-in open() function:
fileHandler = open(filePath, mode)

• mode can be: ‘r’ for reading, ‘w’ for writing (truncates the file first), ‘a’ for
appending (write to the end of the file), the default is ‘r’.

10

Reading from a File

11

Files - Reading From a File

• Various ways to read files (in text mode):
• data = inputFile.read() Reads the entire file as one big string.
• data = inputFile.read(128) Reads 128 characters from the file.
• data = inputFile.readline() Reading one line from a file.
• data = inputFile.readlines() Read all lines from a file. The lines

will be stored in a list and each line of the file is a list item.

12

Files - Reading From a File - For Loop Example

• This will print every line in the file named inputFile.txt:
filePath = 'C:/…/inputFile.txt’

fileHandler = open(filePath)
for line in fileHandler:

print(line.rstrip())

13

Files - Reading From a File - For Loop Example

• This will print every line in the file named inputFile.txt:
• Alternatively, you can do the following:

filePath = 'C:/…/inputFile.txt’

lines = open(filePath).readlines()
for line in lines:

print(line.rstrip())

14

Files - Reading From a File - While Loop Example

• This will also print every line in the file named inputFile.txt:

filePath = 'C:/…/inputFile.txt'

fileHandler = open(filePath)
line = fileHandler.readline()
while line != "":

print(line.rstrip())
line = fileHandler.readline()

15

Files - Reading From a File - File Pointer

• When open() is called, a file handler that contains a pointer is returned to the
caller.

fileHandler = open(filePath))
• This pointer, initially, “points” at the beginning of the opened file.
print('Current position: %d’ % fileHandler.tell())

16

Files - Reading From a File - File Pointer

• When open() is called, a file handler that contains a pointer is returned to the
caller.

fileHandler = open(filePath))
• As the program makes calls to various read functions, the pointer’s position

increments by the number of characters that have been read.
print('read: %s’ % fileHandler.read(1)) char
print('Current position: %d’ % fileHandler.tell()) 1

17

Files - Reading From a File - File Pointer

• You can use the seek(offset, whence) function to reposition the file pointer any
where in the file:

• Offset is the position to move to
• Whence is an optional parameter that can be:

• 0: the offset is an absolute position starting from the beginning of file.
• 1: the offset is a relative position to the current pointer position
• 2: the offset is from the end of the file.

fileHandler.seek(0, 0)

print('read: %s’ % fileHandler.read(1)) prints the first
character in the file.

18

Files - Reading From a File - File Pointer - Example

• Consider the file “inputFile.txt”. Each row consists
of a 2 character long student ID, and a 4-character
long student name.

• Retrieve the ID and name of the third student.
• One solution is to use loops.

inputFile.txt

ID NAME
01 Jack
02 Mack
03 Pham
…

19

Files - Reading From a File - File Pointer - Example
inputFile.txt

filePath = 'C:/…/inputFile.txt'

fileHandler = open(filePath)

while counter <= 2:#skip the first three lines

fileHandler.readline()#skip

counter+=1

s_id = fileHandler.read(2)

fileHandler.read(1) #skip space

s_name = fileHandler.read(4)

print("Student ID: %s, Name: %s.“ % (s_id, s_name))

Program.py

Student ID: 03, Name: Pham.

Console output:

ID NAME
01 Jack
02 Mack
03 Pham
…

20

Files - Reading From a File - File Pointer - Example

• Another solution is to use the file pointer directly.
• We know each row contains 7 characters:

• 2 for ID
• 1 space
• 4 for Name
• 1-2 newline characters (depending on operating system and the

way you opened the file). In windows, I will have 2 newline
characters at the end of each file.

• 2+1+4+2=9 per row.

• We also know, we want the 3rd student; since we have a
header row that makes him in the 4th row.

inputFile.txt

ID NAME
01 Jack
02 Mack
03 Pham
…

21

Files - Reading From a File - File Pointer - Example
inputFile.txt

filePath = 'C:/…/inputFile.txt'

fileHandler = open(filePath)

fileHandler.seek(9*3) #skip the first 3 rows

s_id = fileHandler.read(2)

fileHandler.read(1) #skip space

s_name = fileHandler.read(4)

print("Student ID: %s, Name: %s.“ % (s_id, s_name))

Program.py

Student ID: 03, Name: Pham.

Console output:

ID NAME
01 Jack
02 Mack
03 Pham
…

22

Writing to a File

23

Files - Writing to a File

• Use write(str) function, to write strings to file.
• The file must be opened for writing (‘w’) or appending (‘a’).
• ‘w’ truncates the file first
• ‘a’ not truncating, places file pointer at the end of the file.

outputFile = open(filePath, "w")
outputFile.write("Hello World!\n")
outputFile.close()

Opening file for writing, can
use ‘a’ for append

When writing to the file, you
must add in the new lines

Closing the file

24

Closing a File

25

Files - Closing a File

• The previous example uses close() to close a file. Why close a file?
• Once a file is opened by a program, Python maintains connection to the file

that generally prevents other programs from modifying, deleting, or moving
the file.

• If you are reading from a file you don’t want it to change because of some
other program.

• When your program exit the file handle will be released automatically; but it is
good practice to explicitly release file once you are done reading, while your
program runs to let others get access to it.

26

Files - Closing a File

• If you are writing to a file: it is important to know that writing does not occur
instantly. Python maintains a buffer where it stores the strings that are ought to
be written to the file. Python and the OS coordinate the best time to flush this
data and push it into the actual file area in memory.

• If your program crashes or terminates without closing a file, the flush action
may not have occurred; Python 3 will close and flush buffers when terminating
normally, but a programmer should not depend on this.

27

Files - Closing a File

• Also, opening files, reading from them and writing to them consume memory.
Having unnecessarily-opened files means some memory is being used when it
can be freed.

• CLOSE YOUR FILES!!!

28

Standard Input/Output/Error

29

Files - Standard Input, Output and Error

• We have been using files since the first program that we wrote.
• When you run a Python program, the interpreter opens up three streams,

standard output, input, and error. When a program ends, it closes these
streams.

• These streams are used for display output, and accepting inputs from/to
Python programs.

30

Files - Standard Input, Output and Error

• stdout: is the file handler for the Standard Output file.
• It is opened and closed automatically when the program starts and ends.
• Any values written to it are displayed on the screen.
• The file handler is accessible via the sys package: sys.stdout
• You can write to stdout using the write method, just like any other file.

• You have been writing to it using the print function:

print("Hello World!")
is the same as
sys.stdout.write("Hello World!\n")

31

Files - Standard Input, Output and Error

• stdin: is the file handler for the Standard Input file.
• It is opened and closed automatically when the program starts and ends.
• Values can be written to it when input() or similar function is called. Python’s interpreter

passes these values to the caller.
• The file handler is accessible via the sys package: sys.stdin
• The input() function is equivalent to calling:

sys.stdin.readline().rstrip()

32

Files - Standard Input, Output and Error

• stderr: is the file handler for the Standard Error file.
• It is opened and closed automatically when the program starts and ends.
• Any values written to it are displayed on the screen.
• Intended for displaying error messages instead of program output
• Allows us to redirect program output separately from error messages
• Useful for debugging
• The file handler is accessible via the sys package: sys.stderr
• You can write to stderr using the write method, just like any other file.

• You can also use the print function:
print("ERROR!", file=sys.stderr)
is the same as
sys.stderr.write("ERROR!\n")

Onward to … exceptions.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~hudsonj/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	System: Files
	Files
	Files
	Paths
	Files - File Path
	Files - Check if File Exists?
	Files - File Path
	Open a File
	Files - Opening a File
	Reading from a File
	Files - Reading From a File
	Files - Reading From a File - For Loop Example
	Files - Reading From a File - For Loop Example
	Files - Reading From a File - While Loop Example
	Files - Reading From a File - File Pointer
	Files - Reading From a File - File Pointer
	Files - Reading From a File - File Pointer
	Files - Reading From a File - File Pointer - Example
	Files - Reading From a File - File Pointer - Example
	Files - Reading From a File - File Pointer - Example
	Files - Reading From a File - File Pointer - Example
	Writing to a File
	Files - Writing to a File
	Closing a File
	Files - Closing a File
	Files - Closing a File
	Files - Closing a File
	Standard Input/Output/Error
	Files - Standard Input, Output and Error
	Files - Standard Input, Output and Error
	Files - Standard Input, Output and Error
	Files - Standard Input, Output and Error
	Onward to … exceptions.

