
Functions: Create
CPSC 217: Introduction to Computer Science for Multidisciplinary
Studies I
Jul 2021 - CBE

Jonathan Hudson, Ph.D.
Instructor
Department of Computer Science
University of Calgary

Wednesday, June 2, 2021

Copyright © 2021

2

Functions

• A function is a block of code that accomplishes a single purpose, such as
calculating an average from a list of values, or printing a message to console.

• A function (optionally) takes some inputs (also named arguments), performs some
operations, and (optionally) gives back a result.

• Proper design and use of functions can save time and make a program easy to
read, maintain, organized, and efficient.

3

Great job!
You’ve already been using functions

4

You’ve
already
been using
functions

Built-in functions are provided by
the language

Library functions are similar but
provided by another programmer

User-defined functions are created
by programmers

All function operate the same

5

You’ve already
been using
functions

All function operate the same

Functions might receive some
arguments to work with. This is handled
as parameters in the function definition

When calling the function, we supply
the actual data to the function as
arguments in the function call

Functions may return results

6

Functions Overview

Functions are useful because they:
1. Facilitate code reuse

• Write once, use many times

2. Reduce code complexity
• Allow programmers to break problems into smaller sub problems
• Details relevant to solving a specific sub problem are placed in the function
• Programmer can concentrate on higher level problems

3. Ease Maintenance
• Bugs only need to be corrected once
• Functions can be tested separately

7

Python built-in functions

8

Good style function

• Functions are like tools:
• They need to have a self descriptive name

• indicating a clear description of the task
• One function serves one purpose, code with different purposes

should not be combined into one function.
• You do not design a fridge that is also a stove!

• Functions can use (call) each other
• There could be multiple correct solution

• It depends on your design

9

Your functions

10

User-Defined Functions

• Programmers can define their own functions.
• A function consists of the following components:

• (Required) Function name
• (Optional) Function parameters
• (Required) Function body (code), including a return statement: The function’s body must

contain at least one line of code.

• The following is a minimal function that does nothing:

11

User-Defined Functions

• You can define your own function using the following syntax:

optional one or more
parameters (separated by

commas)

optional one or more return
values (separated by commas)

Function name

indentation

Keyword for
defining function

syntax

A minimum one line of
code

12

Storing functions
Think of what “import math” did

13

Accessing functions in other libraries

def fun():
print ('Hello World!')

def foo():
print ('Goodbye World!')

from fun import *
import foo
def main():

fun ()
foo.foo()

Main body
main()

fun.py

foo.py

main.py

14

Design

15

User-Defined Functions - Well Designed Functions

• A Function should:
• Have a descriptive name that indicates the tasks the function performs.
• Serve one purpose; code with different purposes should not be combined into one

function.
• Reduce code redundancy

• A function that has one line of code is generally not a good function
• A function is that used only once in code is generally not a good function

• Start with comments that describe the function’s purpose, the parameter(s), and any
value(s) that will be returned.

• Functions can call other functions, which further helps in minimizing code
redundancy.

16

Parameters

17

Parameters

• A parameter acts like a variable and holds the value we give to the function
when we call it.

def pay (amount):
print ("Direct bank deposit: $%d." % (amount))

def payroll ():
salary = 40 * 15
pay (salary)

payroll ()

A parameter provides the needed data passed
by the caller

18

Parameters

• A parameter acts like a variable and holds the value we give to the function
when we call it.

def pay (amount):
print ("Direct bank deposit: $%d." % (amount))

def payroll ():
salary = 40 * 15
pay (salary)

payroll ()

A parameter provides the needed data passed
by the caller

The parameter name and argument name can be
different.

The variable salary is a pointer to a place in memory

The parameter amount is a new variable created each
time pay is called which is pointed to same
information in memory

19

User-Defined Functions - Multiple Parameters

• You can define a function that accepts multiple parameters
• The function call must match the number of parameters

• It must also match the expected data type (not enforced by python)

def printbar(char, num):
bar = ''
for i in range(1, num + 1, 1)

bar = bar + char
print(bar)

printbar('-', 3)
length = 10
printbar('=',length)

Do these work?

• printbar ('-')
• printbar (3)
• printbar (length)
• printbar (3, '-')

20

User-Defined Functions - Multiple Parameters

• The following function takes two points (x1, y1) and (x2, y2) in Cartesian plane
and return the Euclidean distance between them.

21

User-Defined Functions - Multiple Parameters

22

Optional Parameters

23

User-Defined Functions - Optional Parameters

• Optional parameters are parameters that programmers do not have to pass to
the function during function call.

• They have default values that will be used if none were provided.
• Optional parameters should appear at the end of the parameter list in the

function definition:

def printbar(char, num = 10):
bar = ''
for i in range(num + 1):

bar = bar + char
print(bar)

printbar('-')
printbar('=', 20)

24

User-Defined Functions - Optional Parameters

• You can define default parameter values
• The function will always use these values unless new ones are declared

25

User-Defined Functions - Optional Parameters

• You can define default parameter values
• The function will always use these values unless new ones are declared

26

User-Defined Functions - Variadic Functions

• Variadic functions are functions that accept a variable number of parameters.
• Useful when you do not know a priori how many parameters the user may pass

to the function:
• Commonly used for functions that perform some operation on a series of

inputs, such as summing numbers, concatenating strings, or formatting output.
• Ex. print(“My name is”, name, “. I am from”, country)

Slide 26

27

User-Defined Functions - Variadic Functions

• You can define a variadic function in python as follows:
def variadicFunction(*args):

for i in args:

print(i)

• args is a conventional name. You can use any name you like.
• You can pass any number of arguments when calling the function:
variadicFunction("a") → a

variadicFunction("a","b","c") → a

b

c

Slide 27

28

User-Defined Functions - Variadic Functions

• You can include defined parameters at the beginning as follows:
def variadicFunction(param1,*args):

print(“Named param is:”, param1)

for i in args:

print(i)

• Start with any named parameters you may have followed by the variable-length
parameter list. You can have none.

• You must pass the named params followed by any number of arguments when
calling the function:

variadicFunction("a") → Named param is: a

variadicFunction("a","b“)→ Named param is: a

b Slide 28

Onward to … using
functions.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~hudsonj/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	Functions: Create
	Functions
	Great job!
	You’ve already been using functions
	You’ve already been using functions
	Functions Overview
	Python built-in functions
	Good style function
	Your functions
	User-Defined Functions
	User-Defined Functions
	Storing functions
	Accessing functions in other libraries
	Design
	User-Defined Functions - Well Designed Functions
	Parameters
	Parameters
	Parameters
	User-Defined Functions - Multiple Parameters
	User-Defined Functions - Multiple Parameters
	User-Defined Functions - Multiple Parameters
	Optional Parameters
	User-Defined Functions - Optional Parameters
	User-Defined Functions - Optional Parameters
	User-Defined Functions - Optional Parameters
	User-Defined Functions - Variadic Functions
	User-Defined Functions - Variadic Functions
	User-Defined Functions - Variadic Functions
	Onward to … using functions.

