
Structures: Lists: Basics
CPSC 217: Introduction to Computer Science for Multidisciplinary
Studies I
Fall 2020

Jonathan Hudson, Ph.D
Instructor
Department of Computer Science
University of Calgary

Tuesday, September 8, 2020

2

What is a List?

• A collection of values
• Values

• May all have the same type, or
• May have different types

• Each item is referred to as an element
• Each element has an index

• Unique integer identifying its position in the list
• A list is one type of data structure

• A mechanism for organizing related data

3

Creating a List

• Format:
<list name> = [<value 1>, ..., <value n>]

• Examples:
names = []  defines an empty list
nums = [10.0, 9.0, 8.5, 5.0, 7.5]
letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
names = ['Marc', 'Jim', 'Ken’]
mixed = [1.0, 1, ”this”, True]

• By defining the list memory is allocated for it

4

* Works on Lists?

5

Repetition Operator (*)

• Just like strings, you can use asterisk to repeat a list

>list = [0]*5

>newList = list*5

Produces a list of size 5 with all elements = 0

Produces a new list of size 25 with all elements = 0

6

Indices

7

Accessing Elements

• Each list element has two unique indices, a positive one and a negative one:
• Positive indices range from 0 to the length of the list minus one (len(list)-1)
• Negative indices range from -len(list) to –1

A B C D E F G H

0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1

8

Accessing Elements - Accessing a Single Element

• To access one element, use the name of the list, followed by the index of that
element in square brackets

• Use this one element just like any other variable

names[index] 
returns the value stored
at location index.

• names refers to the
whole list

• len(names)4
• names.index(‘Ken’)  1

9

Loop on List

10

Accessing Elements - Iterating Over List Items

• A for loop can be used iterates over the list values:

stuff = [1, "ICT", 3.14]
for item in stuff:

print(item)

11

Accessing Elements - Iterating Over List Indices

• Sometimes we need a loop where the control variable varies over the indices
rather than the values

stuff = [1, "ICT", 3.14]
for i in range(0, len(stuff))
print(stuff[i])

List length changes as elements are added/removed.
So, use len() function to determine the length of list.

12

Slicing

13

Slicing a List

• You can produce copies and sub-lists of a list using the range of indices (:). The
following produces a copy of list from a to b-1:

names[start:end]  to
produce a sub-list

• names[:] returns a copy of names
• names[0:2] returns the first two

elements in names
• names[-2:] returns the last two

elements in names

list[a:b]
a is the starting index of the slice. The default is 0.

b is the ending index of the slice. The default is len(list).
b itself is excluded from the slice.

14

Slicing a List

• You can produce a sub-list of a list that consists of certain elements of a list
using :step in the range of indices

names[start:end:step]
 to produce a sub-list

• names[0:len(names):1] returns a
copy of list

• names[::] returns a copy of list
• names[::-1] returns a reversed list
• names[-2::] returns last two elements
• names[::2] returns a list with every

other element in names is skipped.

list[a:b:step]

a and b are defined in previous slide.

step is the amount by which a increments. The default is 1.
step be positive (increment) or negative (decrement).

15

Modifying List

16

Modifying Elements

• Lists are mutable, so their elements can be changed as follows:

names[index] = new_data

names[1] = “Jonathan”

17

Adding Elements

• Lists are mutable, so we can add more elements to them.
• There are three ways to add elements to a list

• append(x): adds a single element to the end of the list
names.append('Daniel')

• insert(i, x): inserts a single element into a list at index i, shifts elements up
names.insert(3, 'Chris')

• extend(L): extends the list by appending the given second list to it
names.extend(['Eric', 'Frank'])

18

Adding Elements

• Example:

names = []
name = input("Enter a name:")
names.append(name)
names_str = input("Enter names separated by comma:")
names.extend(names_str.strip().split(","))
print(names)

19

Printing List

20

Printing List

• There are many ways to print the content of a list.
• Two common ways are:

• using print()
print('names = %s‘ , (names))

• Using a loop  allows us to print the list in a customized format:
for i in range(0, len(names), 1):

print("names[%d] = %s" % (i, names[i]))

21

Copy List

22

Same List

• A list variable is a reference to the list.
names<address of the first byte of the list in memory>

• When duplicating a list variable, the address is duplicated,
not the actual list.

>new_names = names

If you change names you change new_names.
Also true the other way.
>new_names[0] = “Jonathan”

>print(names[0]) → ‘Jonathan’

23

Passing List to Functions

• When passing mutable types, such as lists, to functions, remember that any
changes to the list, will be reflected in the original list in the caller’s scope.

def func2(list2):
...

def func1(list):
list2 = list
func2 (list2)

myList = […]
func1(myList)

myList

list

list2

valuesMain body

func1()

func2()

memory

Memory address is passed

24

Duplicate a List

• Many ways to create a copy of a list (also known as shallow-copy):
• Using slice:

new_names = names[:]
• Using the repetition operator:

new_names = names*1
• Using extend():

new_names = []
new_names.extend(names)

• Using a loop to duplicate the list element by element:
new_names = []
for i in range (0, len(names), 1):

new_names.append(names[i])

25

Tuples?

26

Duplicate a List

• Similar to lists, but
• length cannot be changed
• Items cannot be modified (immutable)
• () empty tuple, (3,) length one tuple

aTuple = (1,"ICT",3.14)

Onward to …
more complicated lists.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~hudsonj/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	Structures: Lists: Basics
	What is a List?
	Creating a List
	* Works on Lists?
	Repetition Operator (*)
	Indices
	Accessing Elements
	Accessing Elements - Accessing a Single Element
	Loop on List
	Accessing Elements - Iterating Over List Items
	Accessing Elements - Iterating Over List Indices
	Slicing
	Slicing a List
	Slicing a List
	Modifying List
	Modifying Elements
	Adding Elements
	Adding Elements
	Printing List
	Printing List
	Copy List
	Same List
	Passing List to Functions
	Duplicate a List
	Tuples?
	Duplicate a List
	Onward to … �more complicated lists.

